
Exploiting Preference Queries for Searching
Learning Resources

Fabian Abel, Eelco Herder, Philipp Kärger, Daniel Olmedilla, and Wolf Siberski

L3S Research Center and Leibniz University of Hannover, Hannover, Germany
{abel,herder,kaerger,olmedilla,siberski}@L3S.de

Abstract. While the growing number of learning resources increases
the choice for learners, it also makes it more and more difficult to find
suitable courses. Thus, improved search capabilities on learning resource
repositories are required. We propose an approach for learning resource
search based on preference queries. A preference query does not only al-
low for hard constraints (like ’return lectures about Mathematics’) but
also for soft constraints (such as ’I prefer a course on Monday, but Tues-
day is also fine’). Such queries always return the set of optimal items with
respect to the given preferences. We show how to exploit this technique
for the learning domain, and present the Personal Preference Search Ser-
vice (PPSS) which offers significantly enhanced search capabilities com-
pared to usual search facilities for learning resources.

1 Introduction

Search capabilities in educational repositories and networks have been improved
in recent years by the introduction of personalization and semantic-based queries.
These techniques are typically realized by adding into the query hard constraints
representing the user wishes (e.g., from the user profile), that is, conditions that
must be fulfilled. Examples of these hard constraints are “results must be either
in English or German and must provide a certification”. There are two choices
how to incorporate these additional constraints into a given query, both leading
to suboptimal answer sets. Either, we use a conjunctive query, i.e., the additional
constraints are connected with an ’and’. In this case, the danger is high that we
end up with an empty result set because of the query becomes too specific. Or,
we add the constraints disjunctively, i.e., all constraints connected with an ’or’.
But then, the size of such a result set grows significantly, and will contain many
scarcely relevant results.

In order to solve the problem of large number of returned results, ranking
mechanisms try to sort the results showing to the user the best matches first,
but this notion of relevancy is typically a score computed out of i.e. number of
occurrences of a keyword, TF/IDF1, proximity of keywords, popularity of the
resource, etc., elements that do not necessarily represent the user wishes.

1 term frequency / inverse document frequency



A closer look reveals that in most cases additional constraints are not hard
constraints. Typically a user may want to express that she wants “courses prefer-
ably in English but if there are not, also in German would suffice and which take
place on Mondays better than Tuesday or Fridays”. These “preferably” and
“better-than” indicate soft constraints in which a user specifies what she prefers,
that is, her wishes as preferences. These preferences can then be used in order
to filter out non-relevant results. For example, if two courses are found, both on
Mondays and one is in English and the other one in German, intuitively the lat-
ter can be discarded since given the same (or worse) conditions, the user prefers
English over German. This way, only optimal results according to preferences
are returned. This improves the satisfaction of the users and reduces the time
they must spend in order to scan large query result sets.

It is important to note that the term user preferences has been extensively
used in the field of user modeling [1] and adaptive hypermedia [2, 3]. Typically,
these user preferences are a set of properties for which learners express inter-
est (and which are added in the queries as hard constraints). By contrast, our
method is more expressive since it does not only allow such interests to be mod-
elled but also allows users to indicate which properties they prefer to another by
allowing for a preference order.

This paper describes how preference-based queries can be used in order to
a) increase the expressivity of queries, helping users describing more accurately
their wishes and interests and b) retrieve efficiently optimal matches according
to the user preferences discarded the rest. The paper is organized as follows:
in Section 2 our approach is motivated with a running scenario. Theoretical
background about preferences and its use in query processing is provided in
Section 3. Section 4 applies this theory to our running example in order to
show how preferences may be applied to search of learning resources. Section 5
describes our prototype implementation and presents some experiments. Finally,
Section 6 compares our approach with existing initiatives, Section 7 discusses
some important issues regarding to user interface and Section 8 concludes the
paper.

2 Motivation Scenario

In the following, we picture a scenario to demonstrate how preference-based
search supports learners in finding suitable courses. We will use this example
throughout the paper to illustrate our approach.

Bob has just bought his first digital camera and now he is looking for a course
about photography. He is not sure what different kinds of courses are available,
but he has certain ideas of his likes and dislikes. For instance, Bob prefers a
class-room course in which he can learn with and get inspired by fellow learners
above a rather solitary distance learning course. Bob is not a professional in
photography: so he does not insist on gaining a certificate. But should there be
a course with a certificate at the same or better conditions (price, etc.), he would
prefer to take the one with the certificate. However, he does not want to pass



an exam for gaining the certificate. Bob believes that he will like doing image
processing with his computer. Hence, he also wants a course comprising some
kind of homework.

Bob would prefer a course offered in the evening on working days, except on
Monday; then he has a weekly appointment with a friend for jogging. If needed,
he could reschedule this appointment, though. He also likes to keep the Friday
evening free for meeting with his chess club. If there are no courses available
during the week, he might consider a course on Saturday or Sunday. Bob would
like to have the course taking place once a week, in a period of about three
months. A course with two meetings per week, or one meeting every two weeks,
would be fine as well. But he absolutely dislikes weekend block courses, as he is
not willing to stay away from home for a longer time over the weekend. However,
since he just got his new camera he wants the course to start as soon as possible
as not to lose any time.

As Bob is an avid cyclist, he does not mind riding up to 10 km to the course,
provided that he can follow a scenic track with cycle lanes. If the course takes
place in the south of the city center he can take the way through the park,
otherwise he has to struggle with cars. Concerning financial issues, Bob also has
some constraints: he is not willing to pay more than 100 euros for the course.

With current search interfaces, it is not possible to specify such a complex
search request. A platform providing extended search capabilities to take into
account all given hard and soft constraints is desirable. With such a platform,
Bob would be able to specify some of his ideas of the desired course: it should
deal with digital photography, it does not need to provide a certificate, it should
start immediately, etc. Additionally, the system exploits its knowledge about
Bob, such as his age, which languages he prefers beyond his mother language. It
also uses Bob’s preferences gained from his past interactions, such as his fondness
for meeting people, the location where he lives, his regular meeting on Fridays.
By taking all these constraints into account, the system is able to perform a query
comprising most of the particularities in Bob’s idea of a course. Probably there
will be no course matching all the constraints, but the system will provide Bob
with a small result set, containing the courses with - according to his preferences
- the lowest deviation from the given preferences.

3 Preferences and Preference-based Queries

In order to model the kinds of hard and soft constraints Bob is able to spec-
ify his preferences with, we will now introduce the notion of Preferences and
Preference-based Queries. As we have seen in the scenario, advanced search for
suitable courses is needed. Searching is not well supported with a query model
where users can only specify hard constraints on course characteristics. To pro-
vide more effective search capabilities in such cases, query languages like SQL
over relational databases and, recently, SPARQL over RDF graphs have been
extended to facilitate preference-based retrieval algorithms [4, 5].



These approaches assign a degree of match with respect to user-specified
soft constraints to each object and then aggregate this degree to compute the
set of best matching answers. Under the common exact match paradigm too
specific query predicates often lead to empty result sets, while too unspecific
hard constraints may yield huge numbers of results. The notion of best matches
fits much better to typical user’s search requests, because it automatically adapts
query specificity to the available objects. Our proposed solution to achieve best
matches is exploiting preference orders for querying.

The notion of preference-based querying in the context of databases has been
formalized independently by Kießling [6] and Chomicki [7]. To describe user’s
preferences in a way exploitable for querying, we rely on the preference query
formalization proposed by Chomicki in [7]. In this extension to relational algebra,
preferences are expressed as binary relations over a set of objects R.

Definition 1. Let A = {a1, . . . , an} be the set of available attributes of the
elements in R, and Ui, 1≤i≤n the respective set of possible values of ai. Then
any binary relation � which is a subset of (U1 × . . .× Un)× (U1 × . . .× Un) is
a preference relation over R.

For combining several preference relations, uni- or multidimensional com-
position of the preference relations is needed. Unidimensional composition is
applicable if the relations are defined over the same attribute subset. If the re-
lations are imposed over different sets of attributes, we need a multidimensional
composition imposing a new preference relation over the Cartesian product of
the sets of attributes. For a composed preference, the combined preference rela-
tions are called dimensions of the composed preference relation. According to [7],
two multidimensional compositions are common:

– lexicographic composition combines two dimensions by considering one as
more important than the other.

– pareto composition allows to combine two preference relations without im-
posing a hierarchy on the dimensions - all dimensions are considered to be
equal.

In most of the cases, imposing a priority to the dimensions is difficult for a
user. For example, in our given scenario it is difficult for the user to decide what
is more important, the schedule of a photography course or its location. It is best
to consider them as equally important, and then let the user do the final choice
given on the found courses. Therefore, we use pareto composition as default to
combine preference relations.

Pareto composition yields a new preference relation following the principle
of pareto domination. An object X is said to pareto-dominate an object Y iff X
is better than Y in terms of at least one of the preference relations and equal or
better in terms of all other preference relations. Or, more formally:



Definition 2. Given the preference relations �1,. . . ,�n over the sets of at-
tributes A1,. . . ,An, the pareto composition �P of �1. . .�n is defined as:

x �P y ⇔ (∀i : x �i y ∨ x =i y) ∧ ∃j : x �j y.

For instance, in our scenario a low-cost course X dominates an expensive
course Y only iff in terms of all other preference relations (e.g., imposed on the
attributes location, duration, etc.) X is at least equally good as Y .

This principle has been exploited in the area of database systems for the so-
called skylining [8–10]. In skyline queries, each single attribute is viewed as an
independent, non-weighted query dimension. Best matches for skyline queries are
determined according to the principle of pareto optimality: each object which is
not dominated by any other object is considered as optimal and as a best match.
All these non-dominated objects are called the skyline of the query.

Pareto composition can be combined with lexicographic composition in the
following way: on some of the pareto-combined dimensions a hierarchy can be
imposed such that only if two objects are equal in terms of the first preference
relation, the second one will be considered. We call the resulting preference
expression a cascaded preference.

In the next section, we show how these preference expressions are applied to
effectively search for learning resources.

4 Preferences on Metadata of Learning Resources

With the preferences at hand, we are now able to specify the constraints in
the scenario in Section 2 in a formal way. For each preference Bob provides,
a preference relation is imposed upon the corresponding attribute. Preference
relations can be expressed over a single attribute (such as Bob’s preferences
concerning the weekday of the course) or over several attributes (such as Bob’s
preference relation about the venue of the course: it depends on two attributes,
the location (north or south) and the distance from his home). According to that,
we can formally define Bobs preferences. For example the preference relation over
the attribute weekday can be represented as:

�weekday= {(Tuesday, Monday), (Wednesday, Monday), (Thursday, Monday), . . .}

And his multi-attribute preference over the venue can be defined as follows:

�venue= {
(location = south ∧ dist. = 10km, location = south ∧ dist. < 10km),

. . .
(location = north ∧ dist. = 10km, location = north ∧ dist. < 10km)}

In a similar way we can define �type of learning, �is homework, �cycle, �price,
etc.

Preference relations build partial orders on the values of the attributes they
are imposed on. In some cases, a preference correspond to a total order (such



as Bob’s preference on price), but usually a total order is too restrictive and
do not allow for indifferences (such as Bob’s indifference concerning Tuesday,
Wednesday, or Thursday). Figure 1 shows the partial orders representing Bob’s
preference relations.

Tuesday Wednesday Thursday

Monday

Sunday Saturday

Friday

face to face

distance

certificate and 
no exam

no certificate 
and no exam

no certificate 
and exam

homework

no homework

certificate and 
exam

once a 
week

twice a 
week

once every 
two weeks

block 
course

3 months

2 months 4 months

south, 10 km

south, < 10 km

south, nearby

north, nearby

north, < 10 km

north, 10 km

south, >10 km north, >10 km

no cost

< 100 €

100 €

Fig. 1. Partially Ordered Sets representing the preference relations according to Bob’s
preferences

These single preferences build up a pareto-composed preference relation�Bob.
Given two courses C1 and C2, C1 �Bob C2 holds if all attributes of C1 are equal
or better according to the attributes preference relations to C2 and in at least
one attribute C1 is better than (and not equal to) C2.

Considering the relation �Bob, the optimal course would be the one fulfilling
all the values of Bob’s preferences, since all others would be dominated by this
relation. And obviously, he would be really happy with a regular 3 month course
happening once a week on Tuesday, Wednesday, or Thursday without an exam
but with a certificate and all the desired features. Unfortunately, in most of
the cases this course does not exist, and it is a challenge to find out which of
the courses available provide an optimal trade-off between desired and existing
features. We will now show by the hand of the dataset depicted in Figure 2 that
the pareto composition �Bob provides exactly the intended best match result,
i.e., the courses in the skyline, or, more precisely, the courses which are not
dominated by any other course.

As stated above, a course C is considered a best match according to Bob
preferences if there is no course C ′ such that C ′ �Bob C, i.e. there is no other



course that dominates C. Given this, we can conclude, that course B in Figure 2 is
irrelevant since it is dominated by A: A is equal to B according to the dimensions
price, distance, and location; but A is better than B according to �weekday (Bob
prefers a course on Tuesday to a course on Monday) which lets A dominate B.
So Bob will not be interested in B since A provides a better alternative. Let us
have a look at A and C: A is better than C concerning �weekday but otherwise C
�venue A holds. Given the pareto composition of these preferences, A and C are
not comparable since none of them dominates the other. Hence, Bob is probably
interested in both since they are orthogonal alternatives.

For attending course D, Bob has to ride to the north of the city what he
really dislikes. But D is for free, so he may accept to drive to the north because
he saves money. �Bob ensures that also this alternative will be included into the
result set since it is not dominated (although it is the last option in terms of
�venue).

Course Weekday Price Distance Location

A Tuesday 44 Euro 2 km south
B Monday 44 Euro 2 km south
C Wednesday 72 Euro 2 km south
D Wednesday no cost 10 km north
E Wednesday 32 Euro 10 km north

Fig. 2. Some available courses for Bob

From the courses depicted in Figure 2, the preference based search with the
query described in the scenario presents the courses A, C, and D. It prunes
the courses B and E. B is dominated by A because on Monday Bob prefers to
attend the jogging with his friend, and A is equally good in all other dimensions.
E is dominated by D, because it is more expensive and not better in any other
dimensions.

5 Preference Search Prototype

To show that preference-based search is a promising approach for managing huge
data sets of learning resources, we implemented a Web Service for preference-
based queries over the whole database for lectures currently held at the Univer-
sity of Hannover. The data set comprises about 10,000 lectures each with about
10 attributes. This yields an RDF graph of over 100,000 triples.

In order to realize the preference-enhanced search facilities, we implemented
a Service called Personal Preference Search Service (PPSS)2 integrated as a Web
Service into the Personal Reader Framework [11].

2 available at http://semweb.kbs.uni-hannover.de:8081/PreferenceQueryGUI



PPSS Syndi-
cation Service

UI ...

Personalization
Service

Personalization
Service

Connector
Service

...

User Modelling
Service

access 
control

User

Syndication
Service

UI UI ...

Syndication
Service

UI UI ...

PPSS ...

... ...

R
D

F
R

D
F

Fig. 3. The PPSS integrated into the Personal Reader Framework

5.1 The Personal Reader Framework

The Personal Reader Framework [11] enables developers to create web service
based Semantic Web applications. Such applications are composed of different
kinds of services as illustrated in Figure 3: Syndication Services implement the
application logic and utilize RDF data that is provided by the Personalization
Services which themselves are called via a Connector Service by specifying a goal.
Based on this goal the Connector Service detects the best suiting Personalization
Services. Both Syndication and Personalization Services are able to access user
data managed by a central User Modelling Service.

As shown in Figure 3 the Personal Preference Search Service is integrated
into the Personal Reader Architecture as a Personalized Service including the
following components:

1. User Interface which enables the user to formulate preference queries and
visualizes the results of a search

2. Syndication Service which preprocesses the preferences, initiates the search,
and processes the results

3. Personalization Service called Personal Preference Search Service offering
the core search engine for Learning Resources

Given this setting, the PPSS is able to benefit from the shared user model
while other services of the Personal Reader Framework will benefit from the
functionality of the PPSS for their part. For example the Personalization Ser-
vice for Curriculum Planning [12] and the MyEar Music Recommender [13] can
utilize the PPSS to offer an improved search for adequate courses and music files
respectively. The Personal Publication Reader [14], which allows users to browse
publications within an embedded context, would be able to provide suggestions
on publications that suit the user’s preferences by integrating the PPSS. Such
integration issues are current research topics.



5.2 The Personal Preference Search Service

Querying with preferences in the context of the Semantic Web is a relatively
new field. In [5], we made a first contribution by establishing an extension for
the RDF query language SPARQL empowered with an implementation based
on the ARQ SPARQL Processor [15] part of the Jena Framework.

To specify preferences, the SPARQL language has been extended by the
PREFERRING-construct, two atomic preference expressions, and two facilities for
combining preference dimensions. For atomic preferences, the following expres-
sion types are offered:

– Boolean preferences are specified by a boolean condition. Results satisfying
that condition are preferred over results which do not satisfy it.

– Scoring preferences are specified by a HIGHEST (resp. LOWEST) followed by a
numeric expression. Results for which this expression leads to a higher value
are preferred over results with a lower value (resp. vice versa).

These atomic preference expressions can be composed to two types of multidi-
mensional preferences (c.f. Section 3):

– A pareto composed preference consists of two preference expressions con-
nected by an AND. Both expressions are evaluated independently. An object
is preferred if it is better in one of both preferences, and at least equally
good in the second one.

– In a cascading preference, two preference expressions are connected by a
CASCADE; the first preference is evaluated first; only for objects which are
equally good with respect to the first preference, the second preference is
considered.

The PPSS operates on top of the extended ARQ engine. If the PPSS receives
an RDF description of preference definitions, it creates a SPARQL query, passes
it to the engine, collects the result set, and returns an RDF description of that
result set. The separation of functionalities in the PPSS (i.e., the separation of
SPARQL query generation, the query processing, and the assembly of the result
set) as well as the architecture of the Personal Reader enables the system to
query each RDF-based data set of learning resources.

The current user interface (shown in Figure 4) allows the user to define
his preferences. Currently we provide total ordered single-attribute preferences
(c.f. Section 3). Due to the complexity of a user interface allowing the definition
of partial orders and dependend dimensions, we currently do not allow for these
kinds of preference structure, although our implementation is able to handle
them. Considerations concerning the user interface are discussed in Section 7.

5.3 Experiments

We have performed experiments with the lecture database of the learning man-
agement system of the University of Hannover. That system currently comprises



Fig. 4. The user interface of the Personal Preference Search Service

9829 lectures. As an example, given the following preference query, we show
how preference queries optimize the result set and provides the desired learning
resources without pruning relevant results or returning non-relevant objects:

Return courses about mathematics. I am interested in readings rather
than in tutorials and seminars. If possible, I would like to attend a 90
minutes lecture. 60 minutes are also fine, but 120 minutes are too long.
I like to have the lecture in the morning rather than in the afternoon.
Due to the lunch break, noon is not possible for me. I don’t want to have
a lecture on Friday. Thursday would be my first choice, then Tuesday.
Wednesday would also be acceptable and is preferred to Monday, where
I am usually still at my parents.

The SPARQL query according to this desired course is shown in Figure 5.
Its corresponding result set is shown in the table in Figure 6. Obviously, none
of the returned courses matches all the desired attributes: the first lecture is
held too late, on Tuesday, and it is not a reading; the second is too long, and



PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX j.0: <http://www.l3s.de/studip#>
PREFIX fn: <java:com.hp.hpl.jena.query.function.library.>

SELECT ?name ?starttime ?type1 ?weekday ?duration ?faculty
WHERE {

?x j.0:name ?name.
?x j.0:type1 ?type1.
?x j.0:weekday ?weekday.
?x j.0:start_time ?starttime.
?x j.0:duration ?duration.
?x j.0:faculty ?faculty.
FILTER (fn:contains(?name,"Mathematik")).

}
PREFERRING

?type1 =’Vorlesung’
CASCADE ?type1 =’Uebung’
CASCADE ?type1 =’Seminar’

AND
?weekday=’Thursday’

CASCADE ?weekday =’Tuesday’
CASCADE ?weekday =’Wednesday’
CASCADE ?weekday =’Monday’

AND
?starttime=’09:00’

CASCADE ?starttime =’10:00’
CASCADE ?starttime =’08:00’
CASCADE ?starttime =’14:00’
CASCADE ?starttime =’15:00’
CASCADE ?starttime =’16:00’

AND
?duration =’90’

CASCADE ?duration =’60’
CASCADE ?duration =’120’

Fig. 5. Preference-extended SPARQL query

so on. (Mind that the order in the table does not correspond to a ranking: all
six results are equally relevant.) However, concerning all the 64 courses about
Mathematics, these 6 results are optimal: the remaining 58 courses are worse in
terms of at least one preference relation.

Without the possibility to define preference orders, there are two alternative
approaches in classic, i.e., best match search interfaces: The first is to conjunc-
tively connect all preferred attributes and do several queries by going step by
step down according to the preference order. This manner of querying returns
to few and - in most of the cases - no results. After some queries with no results
the user gets frustrated, and even if some results are returned, the user needs
to create queries with all different alternatives in order to be able to select the
best match. In our current example the conjunctive query yields an empty result
since non of the courses in Figure 6 bear each of the most preferred properties.

The second approach is to disjunctively put all the possible desired outcomes
into a single query. This query usually returns a huge result set containing the
desired optimal courses but also a lot of non optimal results which are domi-
nated by better ones. In our example, this querying yields to 25 courses (see an
excerpt of the results in Figure 5.3), including courses with suboptimal attribute



Course Start time Type Weekday Duration Faculty

Mathematics Exercises 10:00 Tutorial Tuesday 120 Applied Math.
Mathematics (Economics) 09:00 Reading Thursday 120 Algebra
Mathematics (Geography) 08:00 Reading Thursday 90 Analysis
Mathematics (Engineers) 10:00 Reading Tuesday 60 Applied Math.
Mathematics (Chemistry) 09:00 Reading Thursday 120 Chemistry
Mathematics and Physics 10:00 Reading Tuesday 90 Chemistry

Fig. 6. Optimal courses at University Hannover

combinations. For instance the lecture “Mathematics (Engineers)” held at the
Faculty for Algebra is suitable but obviously worse than “Mathematics (Geogra-
phy)” held by the Faculty for Analysis (third item in Fig. 6) because the latter
dominates the former since it is a 90 minutes lecture which is preferred to a 120
minutes one. For that reason, the longer lecture is not worth to be included into
the result set. By doing that the PPSS reduces the number of results from 25
to 6.

Both, the conjunctive as well as the disjunctive approach are not satisfactory:
the first one comes up with no results whereas the second alternative bothers
the user with many non relevant courses.

Course Start time Type Weekday Duration Faculty

Math. in Physics 14:00 Seminar Wednesday 120 Theor. Physics
Math. in Assurances 08:00 Reading Monday 90 Mathematics

...
...

...
...

...
...

Mathematics (Engineers) 10:00 Reading Thursday 120 Algebra
Math. for Beginners 08:00 Tutorial Wednesday 120 Algebra

Fig. 7. Courses at University Hannover matching the disjunctive query

6 Related Work

Beyond the theoretical achievements in preferences (as summarized in [7, 6]),
several applications of this theory have been realized to support search. In [16],
preference-enhanced search engines for e-shopping are presented. In any of these
systems, preferences are hard-wired into the search mask and cannot be easily
specified or refined by the user. Preference-based search in a digital library is
provided in [17]. There, preferences are defined for one single dimension, i.e.,
over keywords of the desired object. Due to that fact, the preferences are used



to sort the results and can not be exploited to filter irrelevant objects. [18] com-
pares different approaches for catalog search and shows that the preference-based
alternative is the most promising. However, the opportunities for defining prefer-
ences in the search form of the compared preference approach are limited to the
identification and prioritization of dimensions but do not allow for preferences
between the values of the dimensions. This is crucial for complex domains such
as learning resources where most of the dimensions are discrete.

7 Discussion

In the previous sections we have seen that preference queries provide a powerful
means for accessing large e-learning repositories, allowing the users to specify
their preferences without having to give priority to one preference or another.
As only optimal results are returned, all recommended items may be considered
equally relevant. However, some user interface issues should be considered to
maximize the benefits for the users.

It is a well-known phenomenon that ‘first things’ are perceived as being most
important. As an example, Web users almost never look beyond the first page
of search results [19]. This implies that the further from the start of a result list,
the less likely it is that an item will be selected - even if they are as relevant as
the results shown first. The same yields for the order in which preferences are
elicited. Ideally, preferences should be elicited in such a way that any preference
can be given in any order, with immediate and preferably visible feedback [20].

The closed-world assumption of skylining - that only those preferences ex-
plicitly stated by the user are relevant - is not always correct. When planning
ahead, users typically have an idea of what they want, but are unable to directly
express their needs. Only after having seen the first result set and inspecting
its contents, they are able to communicate more advanced preferences. Such a
process of orienteering [21] helps the users in finding what they want rather
than what they ask for. As skylining only returns the results that are deemed
the perfect solution, this process of orienteering might become disrupted: the
user will not be aware of results that are initially second-best, but that might
turn out to be better, based on preferences not yet expressed. For this reason, a
careful combination of preference eliciting and critiquing [22] should be chosen.

8 Conclusions and Further Work

Search capabilities in existing educational repositories typically allow users to
specify hard constraints a query must fulfill. However, users typically do not
think on hard constraints but rather soft constraints such as “Monday is better
but Tuesday would also be fine”. Preferences allow users to specify their wishes
in a way that can be processed by engines in order to return only the best
matches based on such wishes, that is, those results that dominate the rest
of potentially relevant ones. In this paper, we describe how such preferences
and preference-based queries can be used in the context of search of learning



resources. We show how our approach is more expressive than existing ones and
returns optimal result sets. In addition, we present our implementation as a web
service in the Personal Reader Framework and demonstrate its value via some
experiments in the Hannover University learning management system.

Our future work focuses on the improvement of our current prototype with
optimized algorithms based on latest results on skylining research and investigate
an enhancement to our user interface in order to allow the more expressive pref-
erences that our implemented engine already support. In addition, preferences
can also be used for automatic course generation (e.g., curriculum planning) and
for recommendation algorithms [23], directions that we are currently exploring.

Acknowledgements

The authors would like to thank Mohammad Alrifai and Ingo Brunkhorst who
provided the data set and helped to preprocess it. The authors’ efforts were
(partly) funded by the European Commission in the TENCompetence project
(IST-2004-02787) (www.tencompetence.org).

References

1. Kobsa, A.: Generic User Modelling Systems. In: The Adaptive Web: Methods
and Strategies of Web Personalization, Brusilovsky, P., Kobsa, A., Nejdl, W., eds.,
Lecture Notes in Computer Science, Vol. 4321. Springer-Verlag, Berlin Heidelberg
New York (2007)

2. Brusilovsky, P.: Adaptive hypermedia. User Modeling and User-Adapted Interac-
tion, Ten Year Anniversary Issue 11 (Alfred Kobsa, ed.), pp 87-110. (2001)

3. P, B., Peylo, C.: Adaptive and intelligent web-based educational systems. Inter-
national Journal of Artificial Intelligence in Education, Special Issue on Adaptive
and Intelligent Web-based Educational Systems 13 (2003) 159–172

4. Kießling, W., Köstler, G.: Preference sql - design, implementation, experiences. In:
Proceedings of 28th International Conference on Very Large Data Bases (VLDB).
(2002) 990–1001

5. Siberski, W., Pan, J.Z., Thaden, U.: Querying the semantic web with preferences.
In: Proceedings of the 5th International Semantic Web Conference (ISWC), Athens,
GA, USA (2006) 612–624

6. Kießling, W.: Foundations of preferences in database systems. In: Proceedings of
the 28th International Conference on Very Large Data Bases, Hong Kong, China
(2002) 311–322

7. Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database
Syst. 28(4) (2003) 427–466

8. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings
of the 17th International Conference on Data Engineering (ICDE), Heidelberg,
Germany (2001)

9. Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline computation. In: Pro-
ceedings of the 27th International Conference on Very Large Databases (VLDB),
Rome, Italy (2001)



10. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for
skyline queries. In: Proceedings of the ACM SIGMOD International Conference
on Management of Data, San Diego, CA, USA (2003) 467–478

11. Henze, N., Kriesell, M.: Personalization functionality for the semantic web: Archi-
tectural outline and first sample implementations, semantic web challenge 2005.
In: International Conference on Adaptive Hypermedia and Adaptive Web-Based
Systems (AH 2004). (August 2004)

12. Baldoni, M., Baroglio, C., Brunkhorst, I., Marengo, E., Patti, V.: A personalization
service for curriculum planning. In: ABIS 2006 - 14th Workshop on Adaptivity
and User Modeling in Interactive Systems. (October 2006)

13. Henze, N., Krause, D.: Personalized access to web services in the semantic web. In:
SWUI 2006 - 3rd International Semantic Web User Interaction Workshop, Athens,
Georgia, USA (Nov 2006)

14. Abel, F., Baumgartner, R., Brooks, A., Enzi, C., Gottlob, G., Henze, N., Herzog,
M., Kriesell, M., Nejdl, W., Tomaschewski, K.: The personal publication reader,
semantic web challenge 2005. In: 4th International Semantic Web Conference.
(November 2005)

15. Seaborne, A.: An open source implementation of sparql. In: WWW 2006 Develop-
ers track presentation, http://www2006.org/programme/item.php?id=d18 (2006)

16. Kießling, W., Köstler, G.: Preference SQL - design, implementation, experiences.
In: 28th International Conference on Very Large Data Bases (VLDB 2002), Hong
Kong, China. (2002)

17. Spyratos, N., Christophides, V.: Querying with preferences in a digital library. In:
Federation over the Web. Volume LNAI 3847. Dagstuhl Seminar (N 05182) (May
2005)

18. Dring, S., Fischer, S., Kießling, W., Preisinger, T.: Optimizing the catalog search
process for e-procurement platforms. deec 0 (2005) 39–48

19. Spink, A., Wolfram, D., Jansen, B.J., Saracevic, T.: Searching the web: The public
and their queries. Journal of the American Society for Information Science and
Technology 52 (3) (2001) 226–234

20. Pu, P., Faltings, B., Torrens, M.: User-involved preference elicitation. In: Proc.
IJCAI 2003 Workshop on Configuration. (2003)

21. Teevan, J., Alvarado, C., Ackerman, M.S., Karger, D.R.: The perfect search engine
is not enough: a study of orienteering behavior in directed search. In: CHI ’04:
Proceedings of the SIGCHI conference on Human factors in computing systems,
New York, NY, USA, ACM Press (2004) 415–422

22. Viappiani, P., Faltings, B., Pu, P.: Evaluating preference-based search tools: A
tale of two approaches. In: Proceedings of The Twenty-First National Conference
on Artificial Intelligence, July 16-20, 2006, Boston, Massachusetts, USA. (2006)

23. Satzger, B., Endres, M., Kießling, W.: A Preference-Based Recommender System.
In: E-Commerce and Web Technologies. Springer Berlin / Heidelberg (2006)


