
Client- and Server-side Revisitation Prediction with SUPRA

George Papadakis$,�, Ricardo Kawase�, Eelco Herder�
$ National Technical University of Athens, Greece gpapadis@mail.ntua.gr

� L3S Research Center, Hanover, Germany {papadakis, kawase, herder}@l3s.de

ABSTRACT
Users of collaborative applications as well as individual users
in their private environment return to previously visited
Web pages for various reasons; apart from pages visited due
to backtracking, they typically have a number of favorite or
important pages that they monitor or tasks that reoccur on
an infrequent basis. In this paper, we introduce a library
of methods that facilitate revisitation through the effective
prediction of the next page request. It is based on a generic
framework that inherently incorporates contextual informa-
tion, handling uniformly both server- and the client-side ap-
plications. Unlike other existing approaches, the methods it
encompasses are real-time, since they do not rely on training
data or machine learning algorithms. We evaluate them over
two large, real-world datasets, with the outcomes suggest-
ing a significant improvement over methods typically used
in this context. We have also made our implementation and
data publicly available, thus encouraging other researchers
to use it as a benchmark and to extend it with new tech-
niques for supporting user’s navigational activity.

Categories and Subject Descriptors
H.5.4 [Hypertext/Hypermedia]: User Issues, Navigation

General Terms
Algorithms, Experimentation, Measurement

Keywords
Web behavior, Revisitation Prediction, Contextual Support

1. INTRODUCTION
Nowadays, millions of people browse the Web every sec-

ond, navigating from site to site and producing massive
amounts of navigational log data. These data have the in-
trinsic potential to provide a solid basis for understanding
individual user’s behavior. User modeling is the first step

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIMS’12, June 13-15, 2012 Craiova, Romania.
Copyright 2012 ACM 978-1-4503-0915-8/12/06 ...$10.00.

towards this direction, laying the foundation for recommen-
dation and prediction techniques that facilitate users’ surfing
activity.

More than a decade ago, Nielsen claimed that, rather
than investing time and energy on trying to predict indi-
vidual user’s needs, it would be more fruitful to enhance
the overall system design1. In contrast to his assertion, we
share the vision of the adaptive hypermedia community, sup-
porting the idea that “one size does not fit all” [9]. Much
has changed since Nielsen’s declaration, with the majority
of contemporary systems (especially web-based ones) incor-
porating recommendation mechanisms to suggest resources
(e.g., web pages, files or products) to their users according
to an underlying prediction model.

Indeed, many applications can benefit from effective meth-
ods of user modeling, such as Web search, where predic-
tive models have improved the ranking of search engine re-
sults [8]. Navigational information is actually considered
more important than text keywords, since relevant web pages
are typically re-ranked according to the distribution of visits
over them. Hence, the more accurate the predictive models
are, the better search results they yield.

Similarly, individual users can benefit to a large extent
from methods predicting and recommending their next page
request. Both in their working and in their personal envi-
ronment, they usually have to handle repetitive but infre-
quent tasks, revisiting pages after a considerable amount
of time [10]. Although users typically employ bookmarks
to facilitate such activities, the usability of their bookmark
declines rapidly with the constant increase of its size [10].
There is, therefore, a great need for new methods that fa-
cilitate users’ revisitation activity. This applies not only to
client-side settings, but to server-side ones, as well.

In this paper, we introduce a generic surfing prediction li-
brary that serves this need through a set of methods aligned
in three layers. The first one — called ranking layer —
comprises a set of functions that, based on click data, sort
a set of web pages in descending order of their likelihood
to be accessed in the immediate future. The second tier
— called propagation layer — conveys methods that en-
hance the ranking ones with contextual information from
past surfing activity in the form of frequently co-occurring
resources. The third tier — called drift layer — encom-
passes methods that adapt the associations captured by the
propagation layer to the continuously changing interests of
the underlying user(s). The abstraction that lies at the core
of our framework ensures its generality, allowing for the uni-

1http://www.useit.com/alertbox/981004.html

form treatment of both aspects of the next-page prediction
problem: the server-side and the client-side one. Further,
our framework constitutes a real-time solution for predict-
ing navigational activity (i.e., it involves no training phase
of machine learning algorithms), that is simple to implement
and integrate into a user interface.

Special care has been taken to make our library extensi-
ble, so that adding new or improving existing methods in any
tier is a straightforward procedure. This is ensured by the
transparency of the strictly defined interfaces of each layer,
which are analytically described in Section 4. We have also
made public both the implementation and the data used
in this paper under the SUPRA2 project of SourceForge3.
Thus, we provide a common benchmark for new algorithms
in this area, and encourage other researchers to experiment
with our library and extend it with improved or novel tech-
niques.

In summary, the main contributions of this paper are the
following:

• We introduce a generic, real-time library that is suit-
able for predicting the next page request uniformly for
both server-side and client-side applications.

• We extensively evaluate the methods of our library
through a thorough experimental study, involving two
voluminous, real-world datasets. The results verify the
effectiveness and the accuracy of their predictions.

• We have made publicly available the implementation of
our library as well as our experimental data. Through
our formalizations, we provide succinct guidelines to
other researches and encourage them to experiment
with our framework and to extend it with novel meth-
ods.

The rest of this paper is organized as follows: in Section 2
we discuss related work, while in Section 3 we formally define
the problems we are tackling. Section 4 contains a detailed
description of the library we introduce, and Section 5 elabo-
rates on the experimental evaluation. We wrap up our work
with final remarks and future plans in Section 6.

2. RELATED WORK
Several past works have explored surfing behaviors with

respect to users’ revisitation activity. Although they vary
in their estimations, they all recognize that revisitation con-
stitutes a large part of the Web activity. Herder, for in-
stance, quantifies it to 50% of the overall Web traffic [17],
while Cockburn and McKenzie approximate it to 80% [10].
They also noted that bookmarks, the most popular tool for
supporting revisitation, invariably involve managing and or-
ganizational problems, due to the increasing size of their
collections. Novel approaches are, thus, needed to facilitate
this dominant web activity.

We distinguish works relevant to revisitation in two broad
categories: revisitation analysis, which includes studies that
explore patterns in this activity, and revisitation prediction,
which involves works introducing new prediction models for
facilitating revisitation.

2SUPRA stands for “SUrfing Prediction fRAmework”
3http://sourceforge.net/projects/supraproject/

Revisitation Analysis.
Tauscher and Greenberg describe in [26] two important

patterns of revisitation: first, most page revisits pertain to
pages accessed very recently (i.e., the probability for a page
to be revisited decreases steeply with the number of page
requests since the last visit). Second, there is a small number
of highly popular pages that are visited very frequently (i.e.,
the probability for a page to be revisited decreases steeply
with its popularity ranking).

Revisitation behavior has been distinguished by Oben-
dorf et al. into three different categories: short-term (back-
track or undo), medium-term (re-utilize or observe), and
long-term revisits (rediscover) [21]. The authors argue that
the back button is the most commonly used tool for short-
term revisit. Medium-term revisits are facilitated through
the automatic URL completion function, which is activated
when typing the page address directly into the address bar.
However, long-term revisits, which involve a broad range
of pages accessed on a less frequent basis, are poorly sup-
ported: users often do not remember the exact address, and
ironically browsers do not ‘remember’ it either. Adar et
al. further argue in [1] that short-term revisits involve hub-
and-spoke navigation, visiting shopping or reference sites or
pages on which information was monitored. Medium-term
revisits pertain to popular home pages, Web mail, forums,
educational pages and browser homepages, whereas long-
term ones involve the use of search engines with respect to
weekend activities (e.g., going to the cinema).

Though analyzing the phenomenon of revisitation in depth
and providing significant insights into it, none of these works
aims at predicting it.

Revisitation Prediction.
The problem of the next-page prediction has been exten-

sively studied in the literature. The method that has pre-
vailed in this field (at least in terms of popularity), is the As-
sociation Rules Mining. More specifically, association rules
(AR) is a well established method for effectively identifying
related resources without taking into account their order of
appearance (i.e., pages that are typically visited together, in
the same session, but not necessarily in the same order) [3,
4]. They are ideal for recommending resources related to an-
other one, as they disregard the ordering relation between
items. For this reason, numerous works have investigated
the functionality of AR variations [2, 20, 13, 18, 25]. For
example, a recent work by Kazienko explores indirect AR
for web recommendations, involving resources that are not
“hardly” connected as in typical AR [18].

However, AR suffer from a variety of drawbacks. First,
they rely on the most frequent patterns identified in the
training set, thus misclassifying new patterns that are not
included in it. Second, they fail to recommend rarely visited,
non-obvious and serendipitous items, since such resources
never reach the minimum support limit. Third, disregarding
the order of itemsets invariably leads to loss of information
about the frequency of different patterns that involve the
same resources (i.e., the itemset I1 = {1, 2, 3} is treated
equally with all its 6 permutations).

To overcome this last problem, sequential patterns have
also been employed in the context of prediction methods.
Among them, state-based models like Markov models are
particularly popular [28, 5, 27, 11, 12, 6]. Slightly differ-
ent from these models are sequence mining techniques that

do not take into account the strict order between items [4,
24, 23]. A comparison of such techniques with AR was con-
ducted by Géry and Haddad [15]. The authors evaluated
AR against Frequent Sequences, which can be considered
equivalent to association rule mining over temporal data
sets, and Frequent Generalized Sequences, which constitute
a more flexible form of the previous technique, involving
wildcards [14]. The results suggest that the plain Frequent
Sequence Mining performs better in revisitation prediction.
Nevertheless, all these methods still suffer from the inabil-
ity to predict and recommend unseen items (i.e., those not
included in the training set).

With the aim of introducing a prediction method that is
equally effective with unseen data, Awad et al. combined
the Markov model with Support Vector Machines (SVM)
under Dempster’s rule [6]. They experimentally compared
their hybrid model with the individual methods comprising
it and with AR, verifying the superiority of their approach,
especially when domain knowledge is incorporated into it.
Although this is a considerable step towards a method with
better generalization capabilities, it is far from being practi-
cal; it requires a separate SVM classifier for each one of the
available resources and involves a considerably high train-
ing time. In fact, their experimental study involved 5,430
classifiers and 26.3 hours of training for a single dataset.

In a more recent work by Parameswaran et al. [23], the
authors coin precedence mining and build a suite of rec-
ommendation algorithms based on it. They model users’
history as a set of items that have co-occurred in the past
without considering their order of appearance and predict
the set of items that are most likely to follow, regardless of
their actual order (i.e., not necessarily in the next action of
the user). Though quite interesting, they explicitly stress
that their approach is not crafted for the next-page predic-
tion problem.

In contrast to existing works, we introduce a real-time
framework for the next-page prediction problem that re-
quires no training set, thus being able to predict and rec-
ommend unseen items. Moreover, it is inherently capable
of incorporating contextual information in a generic way,
uniformly handling both the server-side and the client-side
versions of this particular problem.

Closer to our work are the predictive algorithms presented
in [7]. In essence, they constitute scoring schemes that aim
at a-priori identifying the next-page request. They are com-
patible with the first layer of our framework, but they are
applied in a different context, as the authors partition user’s
navigational activity into “Web trails” and primarily aim at
detecting the next recurring one. In addition, they disre-
gard associations between pages (second layer of SUPRA)
and the drift in user’s interests (third layer of SUPRA).

3. PROBLEM DEFINITION
At the core of this work lie the notions of web site and

web page. The former is considered as a Web domain (e.g.,
www.l3s.de), which comprises a set of web pages (e.g.,
www.l3s.de/people). Based on this definitions, we formalize
the two aspects of the next-page prediction problem that we
are tackling: the server-side and the client-side one.

The server-side next-page prediction problem aims at de-
tecting which of the visited web pages of a web site will be
accessed in the next request, judging exclusively from the

past navigational activity of its entire user base. More for-
mally, it is defined as follows:

Problem 1 (Server-Side Next-Page Prediction).
Given the set of web pages Ps = {p1, p2, ...} of a web site s,
which have been accessed during the past n page requests,
Rs = {r1, r2, . . . , rn}, order them in such a way that the
ranking position of the page pi that will be re-accessed in the
next request rn+1 is the highest possible.

The client-side next-page prediction problem copes with
identifying which web pages, among those visited by a spe-
cific user in the past, will be revisited in her next request.
Formally, it is defined as follows:

Problem 2 (Client-Side Next-Page Prediction).
Given the collection of web pages Pu = {p1, p2, ...} that have
been visited by a user u during her past n page requests
Ru = {r1, r2, . . . , rn}, order them so that the ranking po-
sition of the page pi that she will revisit in her next request
rn+1 is the highest possible.

There are two fundamental differences between these two
problems:

1. Problem 1 involves a set of separate users, with differ-
ent behavior and interests, who are possibly accessing
the given web site at the same time (i.e., their sessions
are overlapping). In contrast, Problem 2 entails the
navigation activity of a single user, whose interests
change with the time, but probably not as dramati-
cally as in the case of a web site’s user base. From
this aspect, it seems easier to identify patterns in the
user-based scenario.

2. The information space of Problem 1 covers solely the
web pages of the web site at hand, excluding any re-
sources that lie out of its borders. On the other hand,
the predictions of Problem 2 are not confined to a spe-
cific set of pages; they can potentially involve the whole
Web. Hence, the distinct page transitions involved in
the activity of a web site are probably fewer than those
in the activity of a user, making Problem 1 a seemingly
easier scenario than Problem 2.

Note, however, that the second difference does not imply
that the set of pages visited by a user is necessarily larger
than that of a web site. Neither does it mean that a web
site has a confined set of resources; depending on its traffic,
nature and scope, their number can increase much faster
than the pages visited by a single user. As an example,
consider the intranet of a multinational company with pages
added on a daily bases by its employees in order to share
knowledge with their colleagues all over the world.

Our focus in the following is not to compare the peculiar-
ities of these two aspects of the next-page prediction prob-
lem. Instead, we aim at proposing a generic methodology
that is capable of uniformly handling both problems through
the abstraction of the access history of each web page and
the contextual information it entails. Its functionality is
real-time, in the sense that it does not involve the burden
of training data and of configuring machine learning algo-
rithms.

Ranking Methods Propagation M. Drift Methods
event- time- hybrid order- order- event- time-
based based preserving neutral based based

FR PD HDM CTM AM 5HR DM
HQM DTM TR WM
HHM ITM MM

STM

Table 1: Summary of all the methods of the SUPRA
framework.

4. APPROACH
The definitions of Problems 1 and 2 stress that methods

coping with them should facilitate the access to pages used
in the past, rather than trying to suggest not-visited, yet
relevant ones. In this work, we present a library of meth-
ods that deal with these problems by ranking visited web
pages according to their likelihood of being revisited in the
next request; the higher this likelihood is, the higher is the
ranking of the corresponding web page. This ranking is up-
dated after each page request, and the higher the ranking
position of the subsequently accessed page, the better the
prediction. This is in line with the intuition behind rank-
ing search engines’ query results: as noted by Hawking et
al. [16], the lower the ranking of the desired resource, the
better the performance of the search engine.

In more detail, our library consists of three tiers of meth-
ods. The first one involves usage-based ranking methods
that estimate for each web page the likelihood that it will
be accessed in the next request. They derive their estima-
tion from evidence drawn from the surfing history of a web
site or user, such as the recency and/or the frequency of
accesses to each page. The second layer covers propagation
methods; they capture repetitiveness in the navigational ac-
tivity of a web site or user and identify groups of pages that
are typically visited together (i.e., in the same session, but
not necessarily in the same order). Depending on the de-
gree of connectivity between the associated web pages, their
values (assigned by the ranking methods) are then propa-
gated to each other. The third layer contains window-based
drift methods; they employ a sliding time frame to periodi-
cally discard outdated page associations, thus adapting the
propagation methods to the volatile interests of the user(s).
In conjunction, the three layers of our framework form a
comprehensive approach that tackles all aspects of the re-
visitation activity.

In the following, we elaborate on the different types of
methods conveyed by each layer and illustrate their function-
ality with concrete techniques. In summary, they are pre-
sented in Table 1 along with the techniques of the SUPRA
framework that belong to them. Their implementation is
freely available through SourceForge4, thus encouraging other
researchers to experiment with our framework and extend it
with new mechanisms. Special care has been taken to make
this a straightforward procedure through the strict formal-
ization of each layer’s transparent interface that is presented
in the following; any implementation complying with Defi-
nitions 3 and 7 can be easily integrated in our library. Note
also that the real-world data employed in our experiments
have been publicly released, so that they can be used as a
benchmark for prediction algorithms.

4See http://sourceforge.net.

4.1 Ranking Methods
The aim of ranking methods is to provide each web page

with a numerical estimation of the likelihood that it will be
accessed in the next transaction. In essence, they work as
follows: after each page request, the selected ranking method
goes through all visited web pages, estimates their value and
then sorts them in descending order of their expected value.
The estimation is based on the access history of each web
page, which is represented either by the timestamps or by
the indices of the related requests. The abstract form of
these two types of evidence captures the navigational activ-
ity of web sites and users in a uniform way, accommodating
both Problems 1 and 2. They are formally defined as follows:

Definition 1 (Request Indices). Given all page re-
quests R of a system (Problem 1) or a user (Problem 2),
the request indices of a page pi — denoted by Ipi — is the
set of the serial numbers of those requests in R that pertain
to pi. The serial number of the chronologically first request
is 1 and is incremented by 1 for each of the subsequent page
visits.

Definition 2 (Request Timestamps). Given all page
requests R of a system or a user, the request timestamps of
a page pi — denoted by Tpi — is the set of timestamps of
those requests in R that pertain to pi.

Depending on which type of evidence a ranking method
builts on, we distinguish three categories of such methods:
the event-based, the time-based and the hybrid ones. They
are analytically presented in the following.

4.1.1 Event-based
The ranking methods of this category take as input the

request indices of a page and draw its ranking value from
the evidence contained in them. These methods interpret
page visits as a sequence of events and exclusively take into
account their relative position; to estimate the contribution
of an individual visit to the total ranking value of the cor-
responding page, they solely consider the number of events
that have elapsed since its occurrence (i.e., without taking
the actual time of occurrence into account). More formally,
an event-based ranking method is defined as follows:

Definition 3 (Event-based Ranking Method). An
event-based ranking method is a function that takes as input
the request indices Ipi = {i1, i2, . . . , ik} of a page pi together
with the index of the latest request in of a web site or user,
and produces as output a value vpi ∈ [0, 1] that is propor-
tional to the likelihood of pi being accessed at the next page
request rn+1 (i.e., the closer vpi is to 1, the higher is this
likelihood).

This family of methods are represented in our framework
by the decay ranking functions, which estimate the value of
a web page as a comprehensive combination of the frequency
and the recency of its visits [22]. In more detail, the value
of a web page pi after in requests of a web site or user is
derived from the following formula:

DEC(pi, Ipi , in) =

|Ipi
|∑

j=1

d(ij , in), (1)

where d(ij , in) is a decay function that takes as an input
the index ij of a request to pi together with the index of the

current transaction in; its output quantifies the contribution
of this request to the total value of pi.

The main types of decay functions were experimentally
compared in [22], with the polynomial ones consistently out-
performing the exponential and the logarithmic ones. The
reason is that their smooth decay balances harmonically the
recency and the degree of usage of web pages. In contrast,
exponential functions convey a steep decay that puts more
emphasis on the recency of usage, whereas the logarithmic
functions excessively promote frequency, due to their overly
slow decay. The actual value of a polynomial decay function
with exponent α for a page pi at the ij− th request out of in
— in total — accesses is given from the following formula:

d(ij , in) =
1

1 + (in − ij)α
. (2)

In the following, we exclusively consider polynomial decay
functions, denoted by PD for short.

4.1.2 Time-based Ranking Methods
This family of ranking functions receives as input the re-

quest timestamps of a page and estimates its ranking value
based exclusively on them. In more detail, the contribution
of each request to the total ranking value depends on the
actual time the respective page visits took place and the
time that has elapsed ever since (i.e., the time of the latest
request). More formally, a time-based ranking method is
defined as follows:

Definition 4 (Time-based Ranking Method). A
time-based ranking method is a function that takes as in-
put the request timestamps Tpi = {t1, t2, . . . , tk} of a page
pi together with the time of the latest request tn of the un-
derlying user or web site, and produces as output a ranking
value vpi ∈ [0, 1] that is proportional to the likelihood of pi
being accessed at the next page request rn+1.

This type of ranking methods are represented in our frame-
work by the Frecency method — symbolized by FR in the
following — that is integrated in Mozilla Firefox5 for page
recommendations. In essence, the total value it assigns to
a page is equal to the sum of the “bonuses” associated with
its individual visits. Each “bonus” is proportional to the
recency of the corresponding page request; those occurring
within the last four days take the highest bonus, whereas
requests that are older than 90 days take the lowest one.
In addition, FR considers the type of access (i.e., whether
the URL of the page was typed, clicked upon or selected
from the bookmarks collection), but this is out of the scope
of Definition 46. Thus, FR puts more emphasis on the fre-
quency of the use of a Web page, discounting to some extent
the contribution of old visits.

4.1.3 Hybrid
Apparently, the event-based ranking methods cannot cap-

ture temporal patterns that occur periodically in the navi-
gational activity of a user or system. For example, in the
client-side environment, it is common for users to visit the
same news sites early in the morning, before starting their
actual work. Similarly, in the server-side environment, it is

5
See http://www.mozilla.com/en-US/firefox.

6
See https://developer.mozilla.org/en/The Places frecency algorithm

for more details.

common for the employees of a company to consult the wiki
page containing the topics of a fixed, weekly meeting, before
actually attending it. On the other hand, time-based rank-
ing methods cannot capture recent event patterns; imagine
the users of a web site that shift their focus from page A to
page B within a short period of time (e.g., few hours); FR
will continue to rank the former page higher than the latter
one until the accesses of B exceed those of A. PD, though,
will be much faster in adapting its recommendations to the
new trend.

To accommodate such behaviors, hybrid ranking methods
combine the functionality of time-based techniques with that
of the event-based ones: they derive the ranking value of
a page from the number of events and the time that has
elapsed, after its accesses. More formally, they are defined
as follows:

Definition 5 (Hybrid Ranking Method). A hybrid
ranking method is a function that takes as input the request
indices Ipi and the request timestamps Tpi of a page pi along
with the time tn and the index in of the latest request. As
output, it produces a value vpi ∈ [0, 1] that is proportional
to the likelihood of pi being accessed at the next page request
rn+1.

In our framework, this type of ranking methods is rep-
resented by techniques that rely on the polynomial decay
model and enhance it by adjusting its decay rate accord-
ing to temporal evidence. More specifically, we consider the
hybrid day model (HDM), the hybrid day quarter model
(HQM) and the hybrid hour model (HHM), which double
the exponent α of the polynomial decay function (cf. For-
mula 2) for the past requests that took place on the same
day of the week, on the same quarter of the day7 and on the
same hour of the day with the latest request, respectively.
The exponent α remains unmodified for the rest of the visits,
thus increasing the contribution of the requests that share
some temporal information with the latest page visit.

Normalization. Before presenting the propagation meth-
ods, it is worth noting that we employ normalization in order
to restrict the output of all ranking methods in the interval
[0, 1] independently of their functionality. To this the end,
we divide the ranking value of all pages with the currently
largest one after each iteration.

4.2 Propagation Methods
Unlike ranking methods that produce an ordering of web

pages, propagation methods aim at capturing contextual in-
formation through the detection of patterns in the surfing
activity of users. They identify those pages that are com-
monly visited within the same session and associate them
with each other. The “links” created by these methods are
then combined with a ranking method, so that the value of
a web page is propagated to its associated ones. In this way,
the highest the value of a web page is, the more the pages
associated with it are boosted and the more their ranking is
upgraded.

At the core of the associations between resources lies the
notion of session: a collection of pages visited by the same

7We split the hours of a day in four equal intervals and
consider the following quarters of a day: morning (6am to
12am), noon (12am to 6pm), afternoon (6pm to 12 pm) and
night (from 12pm to 6am).

Figure 1: The values of several types of Transition
Matrices after the last page request of the session:
S1 : A → B → C → D → A. a) corresponds to STM ,
b) to CTM , c) to DTM and d) to ITM .

user in sequence, during a specific period of time. On the
client-side, sessions are internally defined by browsers, tak-
ing into account the time and the tabs through which pages
are visited. On the server-side, though, it is not clear which
pages belong to the same session. Following the literature,
we define them as follows:

Definition 6 (Server-side Session). A server-side ses-
sion S = {p1, p2, . . . , pk} is a bag containing in chronological
order all pages pi visited by a specific IP address for a time
period of up to 25.5 minutes [15, 26].

Based on Definition 6, propagation methods can be de-
fined as follows:

Definition 7 (Propagation Method). A propagation
method is a function that takes as input the last page pi of a
session S and defines appropriately the degree of connection
between pi and all other pages visited during S. Thus, for
each pair of pages X and Y , it returns a value vXY ∈ [0, 1]
that is proportional to the likelihood of Y being accessed im-
mediately after X (i.e., the closer vXY is to 1, the more
likely the transition X → Y is).

In this work, we distinguish two families of propagation
methods: the order-preserving ones, which take into account
the order of the transactions within a session, and the order-
neutral ones, which disregard this order. For the former
case, we consider transition matrices, while for the latter we
examine association matrices. We elaborate on them in the
following subsections.

4.2.1 Order-Preserving Propagation Methods
This category of propagation methods relies on the idea

that web pages are typically accessed in the same or simi-
lar order. Hence, given the page requests of a session (or-
dered by time), they build the associations between pages

according to their sequence of appearance; that is, each page
is connected only with the pages preceding it. To capture
these chronological patterns in the navigational activities of
systems and users, we introduce the transition matrix.

In more detail, a transition matrix (TM) is a two dimen-
sional structure with its rows and columns representing the
set of all visited web pages of a system (Ps of Problem 1)
or user (Pu of Problem 2). Each cell TM(x, y) expresses
the number of times that a user visited page y directly af-
ter x. Given that a transition matrix respects the order of
accesses within a session, it is not a symmetrical one, i.e.,
the value of TM(x, y) is not necessarily equal to that of
TM(y, x). Moreover, its diagonal cells are all equal to 0
(i.e., ∀x TM(x, x) = 0). This is because there is no point in
associating a page with itself. In case a retrieved web page
is re-visited by the same user or another one in the subse-
quent request, its ranking does not need to be boosted by
the propagation method, as it is already high enough, due
to the value assigned to it by the ranking method.

In the following, we introduce 4 different techniques for
correlating web pages according to the past navigational ac-
tivity in the context of a TM . They are intuitively illus-
trated through a simple walkthrough example. Given a set
of 4 web pages — A,B,C,D — and the following set of re-
quests during a session S1 : A → B → C → D → A, we
can associate these pages in four different ways (taking into
account the order of the accesses):

1. Simple Connectivity Transition Matrix (STM). The
rationale behind this approach is the expectation that
requests tend to occur in the same strict order. Thus,
the frequencies it defines work exactly as a first-order
Markov model; for each transition x → y, only the
value of the cell TM(x, y) is incremented by one. Fig-
ure 1(a) depicts the values of the transition matrix
according to this rule after the last transition of the
given session, D → A.

2. Continuous Connectivity Transition Matrix (CTM).
Each web page visited within the current session is
associated with all the previously accessed pages. In
this way, it can effectively support requests that take
place in a similar order; that is, in the same direc-
tion, but not necessarily in the same sequence (e.g.,
X → Z → Y and X → Y). In our example, A is asso-
ciated with all other web pages after transition D → A
incrementing the corresponding cells by one (cf. Fig-
ure 1(b)).

3. Decreasing Continuous Connectivity Transition Matrix
(DTM). This strategy operates in a similar way as the
previous one, but increments the cells of TM by a de-
cay parameter that represents the distance in terms of
number of transitions intervening between the corre-
sponding web pages. Therefore, this form of TM lies
in the middle of STM and DTM , supporting evenly
requests that occur either in the same or in similar or-
der. In our example, TM(C,A) is incremented by 1/2
after D → A, since page C is two steps away from the
page A. Figure 1(c) depicts the whole TM after the
transition D → A.

4. Increasing Continuous Connectivity Transition Matrix
(ITM). This is the inverted version of the previous
strategy. Instead of decreasing the value added to

Figure 2: The values of the Association Matrix after
the last page request of the session: S1 : A → B →
C → D → A.

TM(x, y), it increases it proportionally to the distance
of pages x and y. Hence, it results in stronger connec-
tions between pages that are more distant in an effort
to identify the final destination of the given session.
By boosting its value early enough, it can significantly
restrict the number of irrelevant pages that the user
visits before reaching its actual page of interest. The
TM produced by this rule after transition D → A is
presented in Figure 1(d).

It is worth noting that STM was also employed in Awad
et al. [6], but its frequencies were merely used as features to
a classification algorithm. Moreover, CTM was also intro-
duced in Parameswaran et al. [23] as the means of providing
the frequencies of the probabilistic analysis lying at the core
of precedence mining.

4.2.2 Order-Neutral Propagation Methods
In contrast to order-preserving methods, the order-neutral

ones are based on the idea that the temporal order of trans-
actions within a session is not important. Pages that are
visited in the course of the same session should be equally
connected with each other, regardless of their order and the
number of transitions that intervene between them. The ra-
tionale behind this idea is that users may visit a group of
pages X,Y, Z on a regular basis, but not necessarily in that
order.

To model this idea, we introduce the association matrix,
symbolized as AM ; similar to TM , it is a matrix whose rows
and columns correspond to the already visited set of web
pages Ps or Pu. The difference is that AM is built simply
by associating all pages visited in a single session with each
other; each web page is connected not only with the pages
preceding it, but also with those following it. Thus, an AM
is always a symmetrical matrix, with all its diagonal cells
equal to 0. Continuing our example with session S1, the
resulting AM has all non-diagonal cells equal to one, as all
resources were accessed during the same session (Figure 2).

4.2.3 Combining Ranking
with Propagation Methods

To combine a raking method with a propagation tech-
nique, we employ a simple, linear scheme: following the
in-th page request, the value of all pages is (re)computed,
according to the selected ranking method. Then, for each
non-zero cell TM(x, y) or AM(x, y), we increment the value
vy assigned to page y by the ranking method as follows:

vy+ = p(x→ y) · vx, where

• p(x → y) is the transition probability from page x

to page y, estimated by p(x → y) = TM(x,y)∑in
i TM(x,i)

or

p(x→ y) = AM(x,y)∑in
i AM(x,i)

, and

• vx is the value of x estimated by the ranking method.

4.3 Drift Methods
Unlike ranking methods, propagation ones do not sup-

port the drift in the focus of user’s interests; the connections
stored in their matrix remain static and can possibly become
outdated, as they cannot adapt to the constantly changing
habits and interests of users. In the literature, two main
approaches that support concept drift have been proposed:
the first one relies on decay functions to gradually reduce
the weight of page associations, while the second one com-
prises the window-based methods [19]. Based on a sliding
window, the latter retain the most recent associations and
discard the old ones. Due to their simplicity, the third layer
of our framework exclusively encompasses methods of the
latter type to enable the dynamic nature of the propagation
methods.

Depending on the way the size of their window is specified,
window-based drift methods are distinguished into event-based
and time-based ones. The former specify their window with
respect to the size of a batch of considered requests and are
formally defined as follows:

Definition 8 (Event-based drift methods). Given
the page requests R of a user or web site, the matrix M of a
propagation method and a number of requests n, an event-
based drift method updates the connections stored in M so
that they reflect the latest n page requests of R.

Time-based drift methods specify their window with re-
spect to the considered period of time and are formally as
follows:

Definition 9 (Time-based drift methods). Given
the page requests R of a user or web site, the matrix M of a
propagation method and a time period t, a time-based drift
method updates the connections stored in M so that they
reflect the page requests of R that occurred in the latest t
temporal units (e.g., days or weeks).

In this work, we examine the performance of two meth-
ods of the former type and three of the latter. More specif-
ically, the event-based drift methods we consider are the
500-requests — denoted by 5HR — and the 1,000-requests
— symbolized by TR. As their name suggests, they take
into account the five hundred and the one thousand most
recent page requests of the input R, respectively. From the
time-based drift methods, we consider the Day-, the Week-
and the Month-model, which update the underlying propa-
gation matrix so that it maintains the associations of the last
day, the last week and the last month, respectively. They
are symbolized by DM , WM and MM , respectively.

5. EVALUATION

5.1 Datasets
The goal of our experimental study is threefold: (i) to

identify the best performing method from each layer, (ii)
to compare the performance between the layers, and (iii) to

Dwiki Dcms Dusers

Users 1,742 24,614 25
Page Requests 35,223 359,211 137,272
Web Pages 693 4,880 67,641
Sessions 4,783 79,794 4,552
Session Size 7.36 4.50 28.28
Entropy 7.17 7.31 7.41 ± 1.13
Start Date 15.09.2008 31.01.2008 01.08.2004
End Date 15.02.2010 08.03.2010 31.03.2005
Elapsed Days 518 746 104.97 ± 32.41
Backtracking 32.74% 31.00% 19.41% ± 7.45
Revisitation Rate 98.03% 98.64% 48.97% ± 11.33

Table 2: The data sets used in our experimental
evaluation.

compare the performance of each layer in the two different
application areas: the server-side and the client-side one. To
this end, we thoroughly evaluate our framework over three
voluminous, real-world datasets: two for server-side and one
for client-side applications. Their technical characteristics
are presented in Table 2.

The server-side datasets comprise the navigational activ-
ity of two distinct systems: the internal wiki of the L3S Re-
search Center (denoted as Dwiki from now), and the content
management system of the European IP project OKKAM8

(referred to as Dcms in the following). They entail com-
pletely heterogeneous information spaces that are suitable
for examining the performance of our approach in diverse
settings: Dwiki comprises a small set of web pages that are
used to a small extent (68 page requests per day), whereas
Dcms contains 7 times more pages that have been accessed
to a considerably higher degree (482 requests per day). Note
that, in the absence of any other evidence in the logs provid-
ing these datasets, we exclusively relied on the time and the
IP of the page requests in order to estimate the number of
users and to divide the page requests into sessions according
to Definition 6.

Quite diverse is the client-side dataset, as well, which is
symbolized as Dusers in the following. It consists of the ac-
tivity of a participant pool with 25 individuals, 19 male and
6 female. Their average age is 30.5, ranging from 24 to 52
years. The participants were logged for some period between
August, 2004 and March, 2005. The average time span of
the actual logging periods was 104 days, with a minimum
of 51 days and a maximum of 195 days. Participants were
logged in their usual contexts — 17 at their workplace, 4
both at home and at work, and 4 just at home. In total,
137,737 page requests were recorded during the logging pe-
riod. They are unevenly distributed over the 25 users, as
some users visited few hundred distinct pages in the course
of few and short sessions, while some others visited tens of
thousands of pages over much longer sessions.

5.2 Setup
In the course of our experimental evaluation, we simulated

the navigational activity of each system and user indepen-
dently of the others. After each page request, the ranking of
all visited pages was updated, and, in case the next access
was a revisitation, the position of the corresponding web
resource was recorded. From these ranking positions, we

8www.okkam.org

derived the following measures to evaluate the performance
of each prediction method:

1. Success at 1 (S@1). It denotes the portion of requests
that involved a revisited web page placed at the high-
est ranking place by the prediction method. Thus,
it provides evidence for the accuracy of a prediction
method in identifying the next revisited page. The
higher this percentage is, the better is the performance
of the method.

2. Success at 10 (S@10). It stands for the percentage of
requests pertaining to a revisited page that is ranked
in one of the top 10 positions. Thus, it expresses the
actual usability of the prediction method, as users typ-
ically have a look only at the first 10 pages presented
to them (just like they do with web search engine re-
sults [16]). Similar to S@1, the higher its value is, the
better the performance of the method is.

3. Average Ranking Position (ARP). It represents the
position a revisited page is found on average in the
ranking list that the prediction method produces. Thus,
it provides an estimation of the overall performance of
a prediction method, considering the performance over
all the revisitations in the navigational history of a sys-
tem or user, instead of just the top ranked ones. The
lower its value is, the better is the performance of the
prediction algorithm.

On the whole, the combination of these three metrics pro-
vides a comprehensive estimation of the effectiveness of a
prediction algorithm in identifying the subsequently revis-
ited pages. They cover both the predictions that are indeed
useful for users (S@1, S@10) as well as their overall perfor-
mance when considering all revisitations (ARP).

5.3 Results
In the following, we present and analyze the performance

of the methods of each layer in a distinct section. Note
that we present the outcomes for each server-side dataset
separately, whereas, for the client-side dataset, we show the
mean and the standard-deviation of each measure across all
users.

5.3.1 Ranking layer
Before commenting on the actual performances, it is worth

noting that PD can (and sometimes needs to) be calibrated
in order to find the best performing exponent α of the For-
mula 2. The reason is that α determines the steepness of
the decay model (i.e., the balance between recency and pop-
ularity); values closer to 0.0 favor the latter, while values
closer to 2.0 emphasize recency. In our experimental study,
though, we solely considered α = 1.25, since this was found
to have the best performance in [22]. The same configura-
tion was also employed for HDM , HQM and HHM , all of
which are based on PD.

The exact performance of each method of the first layer
is presented in Table 3. We can easily observe the follow-
ing pattern: PD consistently achieves the best value for all
three metrics, in contrast to FR, which exhibits the worst
one in all cases. The reason is probably the different bal-
ance between frequency and recency that the two methods
entail: FR favors the former over the latter, whereas PD
puts more emphasis on recency. In fact, there is a steeper

FR PD HDM HQM HHM

Dwiki

ARP 42.37 18.72 19.05 19.17 18.78
S@1 (%) 5.74 32.58 32.26 32.59 32.59
S@10 (%) 35.57 70.82 70.52 70.44 70.78

Dcms

ARP 85.73 39.46 40.36 40.74 39.64
S@1 (%) 23.24 34.34 34.01 33.64 34.22
S@10 (%) 40.49 59.82 59.77 59.61 59.76

Dusers

¯ARP 290.17 52.59 74.54 74.35 64.78
σARP 347.44 50.19 67.71 66.83 57.15

¯S@1 (%) 12.57 20.33 19.24 19.23 19.28
σS@1 7.72 7.54 7.51 7.48 7.48

¯S@10 (%) 32.33 74.11 71.31 70.70 70.13
σS@10 10.99 7.65 6.68 6.83 7.24

Table 3: Performance of the first layer’s ranking
methods over the server-side data sets, Dwiki and
Dcms, along with their average performance over the
client-side one, Dusers.

decay for the contribution of each page request for α > 1.
The hybrid models lie very close to PD and, as expected, the
finer the granularity of their core time interval is, the smaller
their difference from PD is. Especially for the server-side
datasets, the performance of HHM is almost identical with
that of PD. On the client-side, the same pattern is followed,
but the differences between PD and the hybrid models are
larger — in favor of the former. This obviously implies that
the temporal patterns lying at the core of these models are
rather weak, especially in the case of individual users.

Comparing the performances of the server-side datasets
with the client-side ones, we can notice that ARP is sig-
nificantly lower for Dwiki and Dcms than for Dusers, across
all ranking methods. This is probably caused by the higher
entropy of the client-side navigational activity; as noted in
Table 3, entropy rises from 7.17 for Dwiki to 7.31 for Dcms
and to 7.41 (on average) for Dusers. This means that each
revisit can refer to 144 distinct pages in the case of Dwiki,
to 159 for Dcms and to 170 for Dusers. Note, though, that
entropy is even higher for some users, taking a maximum
value of 9.90, which corresponds to 956 candidate, distinct,
revisited pages.

Regarding S@1, we can notice that it is higher for server-
side datasets for most of the ranking methods. To identify
the reason, we estimated the extent of backtracking ; that
is, how often do two consecutive transactions pertain to the
same page. It was found to be relatively high for Dwiki and
Dcms, taking values over 30% for both of them, while being
significantly lower for Dusers, amounting to less than 20%
on average. On the other hand, S@10 exhibits similar values
in Dwiki and Dusers, with Dcms yielding significantly lower
values. This phenomenon is directly related to the search
space of each dataset; the more pages have been visited in a
system or by a user, the harder is to rank the subsequently
revisited page in one of the top 10 positions. Indeed, Dwiki
involves the smallest search space with 695 distinct pages,
followed by Dusers with 2,706 distinct pages per user (on
average), while Dcms constitutes the largest web site, en-
compassing 4,880 pages.

5.3.2 Propagation layer
To estimate the performance of the second layer, we com-

bined its propagation methods with the best performing

ATM CTM DTM ITM STM

Dwiki

ARP 12.38 12.97 11.39 15.26 11.19
S@1 (%) 32.81 32.53 32.72 32.15 31.15
S@10 (%) 74.48 73.92 76.26 72.17 77.50

Dcms

ARP 29.16 33.88 25.43 40.93 25.72
S@1 (%) 34.67 34.33 34.54 34.05 34.42
S@10 (%) 62.56 61.86 66.32 60.13 68.69

Dusers

¯ARP 28.08 31.54 24.83 42.04 29.71
σARP 22.60 25.76 19.86 38.36 27.69

¯S@1 (%) 20.84 21.46 22.76 20.69 24.63
σS@1 7.21 7.11 6.92 7.21 6.45

¯S@10 (%) 76.13 75.94 80.88 74.23 82.35
σS@10 7.96 7.47 5.72 7.52 5.19

Table 4: Performance of the second layer’s propa-
gation methods over the server-side data sets, Dwiki
and Dcms, along with their average performance over
the client-side one, Dusers. In all cases, PD was se-
lected from the first layer.

ranking one (i.e., PD). The results are presented in Ta-
ble 4. Looking into its numbers, we can observe that DTM
and STM consistently exhibit the best performance with re-
spect to all metrics, both for the server- and the client-side
datasets. ITM , on the other hand, consistently exhibits the
worst performance in most of the cases. ATM and CTM
follow in close distance from DTM and STM , with ATM
achieving the best values for S@1 over Dwiki and Dcms and
the second best ARP for Dusers. In general, though, the
differences between these four algorithms are rather minor,
with the deviation between the maximum and the minimum
value being lower than 10% in most of the cases.

It is interesting to compare again the server-side with the
client-side performance. We can easily notice that the pat-
terns exhibited in the first layer apply only to S@1 and
S@10. In fact, the former remains virtually unchanged, de-
spite the addition of the second layer, whereas the latter is
increased in both cases to the same extent. ARP , though,
exhibits a slightly different evolution; although it continues
to take the lowest value for Dwiki, the substantial differ-
ence between Dcms and Dusers is practically extinguished
in favor of the latter. In fact, some propagation methods
exhibit better ARP for Dusers than for Dcms. This indis-
putably implies that propagation methods manage to negate
the impact of entropy through the page-to-page associations
recorded in the navigational activity of users and systems.

Comparing the performance of the propagation methods
with plain PD, we can notice that ARP values are exten-
sively improved (by up to 50%), S@1 remains practically
stable, while S@10 is increased by 10% on average. Note
that these patterns apply equally to client- and server-side
datasets. They, thus, lead us to the safe conclusion that
propagation methods are not suitable for boosting the rank-
ing of the next revisited page alone; instead, they spread
ranking values in such a way that the aggregate ranking of
the most frequently revisited pages is higher.

5.3.3 Drift layer
To estimate the performance of the third layer, we first

had to identify the best combination of propagation methods
with PD. As mentioned above, CTM and STM achieve
similar performance in all settings, outperforming all other

5HR TR DM WM MM

Dwiki

ARP 17.20 15.80 18.71 18.69 18.68
S@1 (%) 32.11 32.41 32.39 31.98 31.87
S@10 (%) 75.84 76.88 70.83 70.88 70.93

Dcms

ARP 37.69 36.05 39.45 39.37 39.17
S@1 (%) 34.41 34.60 30.08 30.45 32.12
S@10 (%) 66.32 67.68 60.11 60.44 60.97

Dusers

¯ARP 40.78 45.18 51.82 49.05 41.66
σARP 47.36 49.53 49.74 48.15 43.00

¯S@1 (%) 24.58 24.59 23.93 24.47 24.62
σS@1 6.57 6.42 6.46 6.55 6.48

¯S@10 (%) 80.53 81.52 76.65 79.62 81.57
σS@10 6.09 5.67 6.71 5.76 5.27

Table 5: Performance of the third layer’s drift
methods over the server-side data sets, Dwiki and
Dcms, along with their average performance over the
client-side one, Dusers. In all cases, the same meth-
ods were selected from the first and the second layer:
PD and STM , respectively.

techniques of the second layer. Among them, we opted for
STM , given that it consistently has the highest S@10 value,
while the differences with respect to the other metrics are
negligible.

The performance of the drift methods in combination with
PD and STM is presented in Table 5. Comparing them with
PD+STM , we can easily notice that their performance is
significantly lower in all cases. In fact, they have a consider-
able impact on predictive performance, moving it closer to
that of a plain ranking method. The scarcer the update of
the propagation matrix is, the lower is actually the impact
on the benefits of STM ; that is, TR outperforms 5HR in
most of the cases and so doesMM in comparison toDM and
WM . It is also interesting to notice that event-based drift
methods outperform the time-based ones. These patterns
apply equally to the server- and the client-side datasets, in-
dicating that in both cases there is no significant change in
the associations between revisited pages. For the server-side
applications, this can be explained by the closed world effect:
the rate of creating new pages was rather low in both sys-
tems, thus restricting the choice of users to a limited set of
pages. Note, though, that the higher the number of distinct
pages is, the more restricted the impact of drift methods is.
For the client-side dataset, we cannot draw safe conclusions,
due to the limited period of activity logged by our subjects.
Therefore, further experimentation is needed over individ-
ual users whose recorded activity spans a longer period of
time. Similarly, investigation over server-side systems with
a significantly higher diversity of web pages is necessary.

5.4 Discussion
In our experimental analysis, we compared various algo-

rithms for predicting revisited pages both on the server- and
the client-side. These algorithms exploit the following char-
acteristics of revisits:

• Typically, they are focused on pages visited very re-
cently.

• The higher the number of revisits is, the more repet-
itive is the behavior in terms of frequent transitions
between pages.

• There is a small group of pages that is visited very
frequently.

• There are temporal patterns in navigational activity of
systems of users, in terms of repeated revisits during
the same day, the same part of day or the same hour.

• The drift in the interest of the underlying user(s).

It turns out that, even though a small set of frequently
accessed pages covers the majority of revisits, popularity
alone does not suffice for predicting accurately the next re-
visited page. This explains the poor performance of FR. On
the contrary, the recency effect plays a major role in predic-
tion algorithms. Indeed, backtracking is more common than
revisiting popular sites, thus ensuring much higher perfor-
mance for PD.

Another important factor in predicting revisits are the be-
havioral patterns and the contextual information encoded
in them (i.e., transitions between pages that co-occur fre-
quently, but not necessarily in the same order). For this
reason, the combination of PD with the propagation meth-
ods (especially CTM and STM) improves significantly upon
the list of most recently used pages. The differences, though,
become smaller together with the increase of the recency ef-
fect (i.e., higher backtracking).

Another interesting observation is that, despite the differ-
ent assumptions that lie behind the predictions schemes we
are considering, there is a strong correlation between their
performances per system and user. To put it differently, the
better the performance of the best-performing method for
one user or system is, the higher are the scores of the other
prediction schemes for this user or system (r > .87 for all
PD-based methods). This can be attributed to the inherent
characteristics of the navigational activity of systems and
users.

Surprisingly, temporal aspects of revisiting behavior —
be it hourly, weekly or monthly patterns — do not improve
prediction performance. Our evaluation results showed poor
performance for both the drift layer and the hybrid ranking
methods. These results contradict our everyday intuition
that web usage involves routine patterns centered around,
for example, working weeks, lunch breaks and spare time. A
likely explanation is that our web usage behavior does not
follow any temporal patterns — at least not to an extent that
is needed for reliable predictions. It may also be the case
that these temporal patterns can only be reliably exploited
after a longer time period than the one considered in our
experiments. One indication for the latter explanation is
that for some users the addition of drift methods led to a
slight improvement.

In general, we can conclude that the most important fac-
tor to be taken into account for predicting revisiting be-
havior is the recency effect. However, the performance of
the predictions is greatly improved when the ranking takes
page popularity into account, as well. Another major im-
provement can be obtained by combining the a-priori page
rankings with propagation methods that exploit conditional
patterns in user navigation.

6. CONCLUSIONS
In this paper, we presented SUPRA, a generic, real-time

surfing prediction library that aims at facilitating users’ re-
visitations in a uniform way for both server-side and client-

side applications. To this end, it encompasses a set of pre-
diction methods that are distinguished into three layers:

1. the ranking layer, which orders resources according to
their likelihood of being accessed in the immediate fu-
ture,

2. the propagation layer, which captures contextual infor-
mation from navigation patterns and related resources,
and

3. the drift layer, which exploits temporal aspects of re-
visits.

Our extensive experimental evaluation with two large, real-
world datasets verified the benefits of combining methods of
the different categories in order to effectively predict the
next revisited page.

An additional goal of our work is to enable other re-
searchers to experiment with our library, to extend it with
novel methods and to integrate it into their applications.
Thus, we have made the implementation publicly available
through SourceForge. Having specified a set of minimal re-
quirements for the ranking, propagation and drift methods,
it is easy to plug into our framework any new algorithm
that follows the formal definitions of Section 4. Moreover,
we have released our real-world dataset, too, with the aim
of offering to the research community a benchmark for com-
paring similar algorithms on an equal basis.

In the future, we plan to focus on enhancing the efficiency
of our methods and to integrate our library into intelligent
user interfaces. We actually intend to develop a browser tool
that allows users to interact with the output of our methods,
recommending a collection of URLs that are expected to be
the next destination of the user. Special care will be taken to
ensure the serendipity of the recommendations, so that they
include not only the obvious resources, but also web pages
that are usually overlooked between the head and the long
tail. Users will also have the option to choose the prediction
method that best fits their navigational behavior.

7. ACKNOWLEDGMENTS
This research has been co-funded by the European Com-

mission within the eContentplus targeted project OpenScout,
grant ECP 2008 EDU 428016.

8. REFERENCES
[1] E. Adar, J. Teevan, and S. T. Dumais. Large scale

analysis of web revisitation patterns. In CHI, pages
1197–1206, 2008.

[2] G. Adomavicius and A. Tuzhilin. Using data mining
methods to build customer profiles. IEEE Computer,
34(2):74–82, 2001.

[3] R. Agrawal, T. Imielinski, and A. N. Swami. Mining
association rules between sets of items in large
databases. In SIGMOD, pages 207–216, 1993.

[4] R. Agrawal and R. Srikant. Mining sequential
patterns. In ICDE, pages 3–14, 1995.

[5] D. W. Albrecht, I. Zukerman, and A. E. Nicholson.
Pre-sending documents on the www: A comparative
study. In IJCAI, pages 1274–1279, 1999.

[6] M. Awad, L. Khan, and B. M. Thuraisingham.
Predicting www surfing using multiple evidence
combination. VLDB J., 17(3):401–417, 2008.

[7] J. Brank, N. Milic-Frayling, A. Frayling, and
G. Smyth. Predictive algorithms for browser support
of habitual user activities on the web. In Web
Intelligence, pages 629–635, 2005.

[8] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks,
30(1-7):107–117, 1998.

[9] P. Brusilovsky. Adaptive hypermedia. User Modeling
and User-Adapted Interaction, 11(1-2):87–110, 2001.

[10] A. Cockburn and B. J. McKenzie. What do web users
do? an empirical analysis of web use. Int. J.
Hum.-Comput. Stud., 54(6):903–922, 2001.

[11] M. Deshpande and G. Karypis. Selective markov
models for predicting web page accesses. ACM Trans.
Internet Techn., 4(2):163–184, 2004.

[12] M. El-Sayed, C. Ruiz, and E. A. Rundensteiner.
Fs-miner: efficient and incremental mining of frequent
sequence patterns in web logs. In WIDM, pages
128–135, 2004.

[13] X. Fu, J. Budzik, and K. J. Hammond. Mining
navigation history for recommendation. In IUI, pages
106–112, 2000.

[14] W. Gaul and L. Schmidt-Thieme. Mining generalized
association rules for sequential and path data. In
ICDM, pages 593–596, 2001.

[15] M. Géry and M. H. Haddad. Evaluation of web usage
mining approaches for user’s next request prediction.
In WIDM, pages 74–81, 2003.

[16] D. Hawking, N. Craswell, P. Bailey, and K. Griffiths.
Measuring search engine quality. Inf. Retr.,
4(1):33–59, 2001.

[17] E. Herder. Characterizations of user web revisit
behavior. In LWA, pages 32–37, 2005.

[18] P. Kazienko. Mining indirect association rules for web
recommendation. Applied Mathematics and Computer
Science, 19(1):165–186, 2009.

[19] I. Koychev and I. Schwab. Adaptation to drifting
user’s interests. In ECML Workshop: Machine
Learning in New Information Age, pages 39–46, 2000.

[20] B. Mobasher, R. Cooley, and J. Srivastava. Automatic
personalization based on web usage mining.
Communications of the ACM, 43(8):142–151, 2000.

[21] H. Obendorf, H. Weinreich, E. Herder, and M. Mayer.
Web page revisitation revisited: implications of a
long-term click-stream study of browser usage. In
CHI, pages 597–606, 2007.

[22] G. Papadakis, C. Niederee, and W. Nejdl.
Decay-based ranking for social application content. In
WEBIST, pages 276–282, 2010.

[23] A. G. Parameswaran, G. Koutrika, B. Bercovitz, and
H. Garcia-Molina. Recsplorer: recommendation
algorithms based on precedence mining. In SIGMOD,
pages 87–98, 2010.

[24] J. Pei, J. Han, and W. Wang. Mining sequential
patterns with constraints in large databases. In
CIKM, pages 18–25, 2002.

[25] J. J. Sandvig, B. Mobasher, and R. Burke. Robustness
of collaborative recommendation based on association
rule mining. In RecSys, pages 105–112, 2007.

[26] L. Tauscher and S. Greenberg. How people revisit web
pages: empirical findings and implications for the

design of history systems. Int. J. Hum.-Comput. Stud.,
47(1):97–137, 1997.

[27] Y. Yao, L. Shi, and Z. Wang. A markov prediction
model based on page hierarchical clustering. Int. J.
Distrib. Sen. Netw., 5(1):89–89, 2009.

[28] I. Zukerman, D. W. Albrecht, and A. E. Nicholson.
Predicting users’ requests on the www. In UM, pages
275–284, 1999.

