
A Flexible Rule-Based Method for Interlinking,
Integrating, and Enriching User Data

Erwin Leonardi1, Fabian Abel2, Dominikus Heckmann3, Eelco Herder2,
Jan Hidders1, Geert-Jan Houben1

1 Delft University of Technology, PO Box 5031, 2600 GA Delft, the Netherlands

{e.leonardi, a.j.h.hidders, g.j.p.m.houben}@tudelft.nl
2 L3S Research Center, Appelstrasse 9a, 30167 Hannover, Germany

{abel, herder}@l3s.de
3 German Research Center for Artificial Intelligence, Saarbrucken, Germany

heckmann@dfki.de

Abstract. Many Web applications provide personalized and adapted services
and contents to their users. As these Web applications are becoming
increasingly connected, a new interesting challenge in their engineering is to
allow the Web applications to exchange, reuse, integrate, interlink, and enrich
their data and user models, hence, to allow for user modeling and
personalization across application boundaries. In this paper, we present the
Grapple User Modeling Framework (GUMF) that facilitates the brokerage of
user profile information and user model representations. We show how the
existing GUMF is extended with a new method that is based on configurable
derivation rules that guide a new knowledge deduction process. Using our
method, it is possible not only to integrate data from GUMF dataspaces, but
also to incorporate and reuse RDF data published as Linked Data on the Web.
Therefore, we introduce the so-called Grapple Derivation Rule (GDR) language
as well as the corresponding GDR Engine. Further, we showcase the extended
GUMF in the context of a concrete project in the e-learning domain.

Keywords: user modeling, user data integration, personalization, semantic
enrichment, knowledge derivation

1 Introduction

Nowadays, numerous Web applications provide adapted and personalized contents
and services to their users. To be able to provide such contents and services, these
applications explicitly or implicitly collect data about their users and their behavior.
Explicit user data collection approaches rely on asking the user directly, for example,
by using a survey form or by asking the user to give ratings to certain products.
Implicit approaches imply the observation of the users’ behavior: Web applications
log and monitor the user behavior in order to construct a user model fitting with the
personalization goals of the application. So, a key concern in developing such
adaptive Web applications is to model the users and their behavior for achieving the
personalization and adaptation goal of the applications. At the same time, these Web

applications are becoming increasingly connected. This creates the interesting
challenge of performing user modeling and personalization across application
boundaries. It requires approaches allowing various Web applications to exchange,
reuse, interlink, and integrate user data. On the one hand, the ability of exchanging,
reusing, interlinking, and integrating the user models allows applications to enhance
and broaden their user models with additional data. In addition, it is particularly
essential for a better integration and cooperation between the applications. On the
other hand, it helps users to get the content and services that suit their needs and
situations and to syndicate these services. As different applications may represent the
same information in different ways, using different syntactic and semantic, the Web
applications have to ensure interoperability of the user data in order to be able to
exchange, reuse, and integrate user data. Consequently, addressing the interoperability
issue is essential when developing interoperable adaptive Web applications.

In essence, there are two ways to ensure interoperability between two applications
and their user models: the shared format approach [5,20,22] and the conversion
approach [6]. The shared format approach involves a lingua franca, an agreement
between all parties on a common representation and semantic. An alternative
approach, which is more flexible, involves conversion between the different
applications’ user models. Conversion allows for flexible and extensible user models,
and for applications to join into a platform. Moreover, in contrast to a shared format
approach, conversion is suitable for “open-world user modeling”, which is not
restricted to one specific set of systems [6].

Furthermore, we observe that there is a growing effort known as Linking Open
Data1 to make data interlinked and openly accessible on the Web by following the
principles of Linked Data [7]. This effort opens opportunities to unlock a huge
potential of data, including the user data. By reusing this interlinked data (such as
DBpedia2 and GeoNames3), various relationships between data can now be derived
and discovered, and thus make data more meaningful and richer. Note that this data is
published as RDF and accessible through a SPARQL endpoint. Nevertheless, the
distributed nature of the RDF data sources creates a new interesting problem, that is,
the problem of integrating RDF data from multiple distributed data sources. There are
two possible solutions for this problem: data centralization and query federation
[8,9,10]. The first approach provides a query service over a collection of data copied
from different sources on the Web, while the second approach executes queries only
on selected datasets that are part of the collection. This observation leads us to
investigate how this distributed interlinked data can be reused and be beneficial for
the purpose of exchanging, integrating, and enriching user data in the interoperable
adaptive Web applications.

 In this paper, we present the Grapple User Modeling Framework (GUMF) that
facilitates the brokerage of user profile information and user model representations.
We show how the existing GUMF [11] is extended with a new flexible rule-based
method that enhances the reasoning capability of GUMF by allowing the applications
to specify a “recipe” that guides the new knowledge deduction process in the

1 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
2 http://dbpedia.org/
3 http://geonames.org/

distributed setting using a rule language called Grapple Derivation Rule language
(GDR). GDR extends GUMF with the flexibility for applications to flexibly define
configurations that guide the user data integration and enrichment processes. Also,
with GDR the applications are able not only to integrate data from GUMF dataspaces,
but also to incorporate and reuse linked data published on the Web. Without GDR
performing such processes are more complex and may not be efficient. To validate
this, the implementation of the GUMF extended with GDR is applied in the
GRAPPLE project4 for user data in the e-learning domain.

The rest of this paper is organized as follows. Section 2 discusses the related work.
We briefly introduce GUMF in Section 3. In Section 4, the Grapple Derivation Rule
language (GDR) and the GDR Engine are presented. We also elaborate how GUMF is
extended with GDR. Section 5 showcases the extended GUMF in the e-learning
domain in the context of a concrete project. Finally, Section 6 concludes our
discussion.

2 Related Work

In the user modeling research field, a host of approaches have been delivered to
address the user model interoperability problem. There are basically two approaches:
the shared format approach and the conversion approach. In the first approach, a
common language for a unified user profile (a lingua franca) is needed. Examples of
this approach are the General User Model Ontology (GUMO) [20] and Composite
Capability/Preference Profiles (CC/PP)5. This approach is easily exchangeable and
interpretable as there is no syntactic and semantic heterogeneity issue to be addressed
[20]. However, this approach is not suitable for open and dynamic environments, such
as the Web, as it is impractical and in many cases impossible to enforce Web
applications to follow the lingua franca [21]. The conversion approach is more
flexible and suitable for open and dynamic environments [6]. In this approach, a
technique has to be developed for converting a user model of one application to
another application. It should deal with the problem of syntactic and semantic
heterogeneity. The potential drawbacks of this approach are that it is possible that
some information is lost during the conversion process, and that it is possible that
models are simply incompatible. It is also possible that the mappings are incomplete
because required information in one model is not available in the other model.

Furthermore, the Grapple Derivation Rule language builds upon existing rule
languages such as the Rule Markup Language (RuleML) [18] defined by the Rule
Markup Initiative. RuleML is a markup language developed to express both forward
(bottom-up) and backward (top-down) rules in XML for deduction, rewriting, and
further inferential-transformational tasks. RuleML itself covers the entire rule
spectrum, from derivation rules to transformation rules to reaction rules, and thus
can specify queries and inferences in Web ontologies, mappings between Web

4 GRAPPLE is the acronym for an EU FP7 STREP Project denoting “Generic Responsive

Adaptive Personalized Learning Environment” – http://www.grapple-project.org/
5 http://www.w3.org/Mobile/CCPP/

ontologies, and dynamic Web behaviors of workflows, services, and agents. The
Semantic Web Rule Language (SWRL) [15] is a proposal for a Semantic Web rules-
language that is based on a combination of the OWL DL and OWL Lite sublanguages
of the OWL Web Ontology Language [16,17] with the Unary/Binary Datalog
RuleML sublanguages of the Rule Markup Language [18]. Rules are of the form of
an implication between an antecedent (body) and consequent (head). The intended
meaning can be read as “whenever the conditions specified in the antecedent hold,
then the conditions specified in the consequent must also hold”. The observation that
there are currently many “rules languages” in existence in the web community lead to
the Rule Interchange Format (RIF) which is a standard in development within the
W3C Semantic Web Activity [19]. GDR is different from the existing rule languages
at least for the following reasons. Firstly, it provides definitions of premise and
consequent at the level of Grapple statements that constitute the lingua franca when
interacting with GUMF. Secondly, it allows the integration of knowledge using
multiple distributed data sources published as Linked Data on the Web.

To deal with the distributed nature of data sources published on the Web as RDF
data, recently, there has been much research on the subject of integrating different
RDF graphs into a single RDF graph and the related problem of querying distributed
RDF data sources that were integrated into a single virtual RDF data source.
Langegger et al. present in [10,12] the SemWIQ system that has a mediator-wrapper
architecture and allows the integrated data to be queried with a subset of SPARQL
and implements and optimizes these queries by translating them to an algebra called
ARQ2. The notion of networked graphs is introduced by Schenk et al. in [13] where
they discuss the problem of integrating different RDF graphs by defining SPARQL-
based integration rules between them. The problem of optimizing a query that queries
different external RDF data sources is discussed by Zemanek et al. in [14] which
concentrates on minimizing communication cost by using semi-joins. The same
problem is addressed by Hartig et al. in [9] which focuses on the subproblems of
efficiently finding the data sources related to the query during query execution and
efficiently executing the queries by using an iterator-based pipeline approach in its
query evaluation plans. Finally, the DARQ system, described by Quilitz et al. in [8]
allows the integration of distributed RDF data sources into a single virtual RDF data
source by specifying which data is to be found in which external data source. It uses
query-rewriting and cost-based query optimization to obtain efficient distributed
query evaluation plans.

3 GUMF

The Grapple User Modeling Framework (GUMF) [11] enables systems to benefit
from the multi-faceted user data traces that are distributed across different Web
systems. GUMF provides generic user modeling functionality that is adaptable to the
requirements of the individual systems that utilize it: it aggregates, contextualizes and
models user data so that systems can easily incorporate the data without having to
solve interoperability issues such as schema mapping. Further, GUMF together with
its plug-ins feature reasoning capabilities for deducing new information about users

from their profile and activity data. In the context of the afore mentioned GRAPPLE
project, GUMF is applied to provide user modeling functionality across e-learning
application boundaries and thus it connects learning management systems such as
Moodle, AHA!, and CLIX. In the remainder of this section we present the
architecture and components of GUMF in more detail.

Fig. 1 GUMF Architecture

3.1 Architecture and Building Blocks

GUMF can be considered as an intelligent storage and reasoning engine that provides
uniform access to distributed heterogeneous user data. Fig. 1 shows its architecture.
The blue elements at the top provide the essential, generic functionality of the
framework; the purple components at the bottom provide generic as well as domain-
specific plug-in and reasoning functionality.

Client applications can access GUMF either via a RESTful or SOAP-based API.
Further, there is a Java Client API that facilitates development of GUMF client
applications. Client applications mainly approach GUMF to store user information
(handled by the Store Module) or to query for information (handled by Query
Engine). By default, user profile information is modeled by means of Grapple
statements (see below) that constitute the lingua franca when interacting with GUMF.
Grapple statements are basically reified RDF statements about a user, enriched with
DCMI metadata6 for describing provenance details. The current GUMF
implementation supports SPARQL [4] and SeRQL [2] queries as well as a pattern-
based query language – Grapple Query language – that exploits the Grapple statement
structure to specify what kind of statements should be returned.

Queries are executed on so-called dataspaces (Dataspace Logic) that logically
bundle data that is possibly distributed across different sources on the Web, as well as
offer reasoning functionality provided by different reasoners and plug-ins of the

6 http://dublincore.org/documents/dcmi-terms/

Reasoning Logic. Dataspaces thus go beyond the notion of namespaces as they
explicitly denote a set of things (e.g. data, reasoning rules, data aggregation plug-ins,
schema mapping rules), on which an operation – such as a query, store or reasoning
operation – should be performed. In more detail, such dataspaces represent the part of
GUMF that a certain client application is managing and responsible for, i.e., its own
workspace. The Administrator of a GUMF client application can configure dataspaces
and plug-ins via the GUMF Admin Interface (see Fig. 1). Activating or deactivating
plug-ins and adjusting plug-ins and reasoning rules directly influence the behavior of
dataspaces. Inspired by Web 2.0 practices, a key principle of GUMF is that
dataspaces can be shared across different client applications. Therefore, clients can
subscribe to other dataspaces, as long as the administrator of the dataspace approves
them. When subscribed to a dataspace, the client is allowed to query it. However, it
might still not be allowed to access all statements that are made available via the
dataspace, as fine-grained access control functionality can be embedded in the
dataspaces as well.

Fig. 2 User Modeling with GUMF Dataspaces

3.2 User Modeling with Intelligent Dataspaces

User modeling functionality of GUMF is embedded into dataspaces. In [1] we
implemented the user modeling components that are applied to enrich data stored by
client applications as depicted in Fig. 2. Client C1 stores information about a user in a
dataspace and more precisely in the repository associated with the dataspace. C1
might for example report that a new user registered to the system. Information about
the user is internally modeled by means of Grapple statements, for example, C1 stores
that a new user whose name is “Bob Myers” registered to C1. Fig. 3 shows the
corresponding statement in RDF/XML syntax.

Grapple statements are subject-predicate-object bindings enriched with metadata.
They not only describe the actual statement, i.e. Bob’s (gc:subject =

http://bob.myopenid.com) name (gc:predicate = http://xmlns.com/foaf/0.1/name) is
“Bob Myers” (= gc:object), but also additional details such as the creator of the
statement (gc:creator), the time when the statement was created (gc:created) or the
degree to which the statement holds for the subject (gc:level)7. Storing a Grapple
statement might trigger some plug-ins embodied into the dataspace. In Fig. 2, the
Social Web Aggregator [1] obtains other accounts the user has via the Social Graph
API8. Given these mappings, the plug-in gathers – if available – public profile data
about the user from the corresponding platforms: tag-based profiles from Delicious,
StumbleUpon, Last.fm, and Flickr, social network profiles from LinkedIn and
Facebook, and blog posts from Twitter and Blogspot. The aggregated profile data is
then enriched with semantic annotations (Semantic Enhancement in Fig. 2). In
particular, the elements of the tag-based profiles [3] are mapped to DBpedia URIs that
specify the semantic meaning of the tags and WordNet9 categories are applied to
cluster the profile [1]. Hence, based on the rather basic Grapple statement, which is
listed in Fig. 3, GUMF gathers the distributed profile traces of the user so that the
client can exploit a rich profile the next time it is querying the dataspace (cf. Fig. 2).

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:gc="http://www.grapple-project.org/grapple-core/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#">
<gc:Statement rdf:about="http://grapple-project.org/2010-01-28-526341">
 <gc:subject redf:resource="http://bob.myopenid.com"/>
 <gc:predicate rdf:resource="http://xmlns.com/foaf/0.1/name"/>

<gc:object>Bob Myers</gc:object>
<gc:level rdf:datatype="xsd:double">1.0</gc:level>
<gc:created rdf:datatype="xsd:dateTime">
 2010-01-28T00:09:20.621+02:00
</gc:created>
<gc:creator rdf:resource="http://grapple-project.org/client/1"/>

</gc:Statement>
</rdf:RDF>

Fig. 3 Grapple statement: Bob's name is Bob Myers.

The components that are plugged into dataspaces come in different flavors: Some
plug-ins are black-box components while others are rule-based and are thus highly
flexible. In [1], an example of black-box plug-ins is presented and in [11] a rule-based
plug-in that is limited to integrate data only within a single Grapple dataspace is
discussed. In the next section, we introduce the GDR language that extends and
enhances the reasoning capability of GUMF and enables developers and
administrators to create such flexible, rule-based dataspace plug-ins that are capable
of integrating user data from multiple Grapple dataspaces and data published as
Linked Data on the Web.

7 Note that gc:creator and gc:created are sub-properties of dc:creator and dc:created as defined

by DCMI.
8 http://socialgraph.apis.google.com
9 http://wordnet.princeton.edu

4 GDR

In this section, we elaborate in details on the Grapple Derivation Rule language
(GDR) that enables GUMF to provide a flexible way of defining plug-ins by allowing
the applications to specify a “recipe” for integrating and enriching user data. We also
discuss the GDR Engine that processes a GDR rule and derives new Grapple
statements. Finally, we present how GUMF is extended with GDR.

4.1 GDR Definition

In the human readable syntax, a GDR rule has the form: a ⇒ c, where a and c are the
antecedent and consequent of the rule, respectively, where a is a conjunction of
premises written p1 ∧ ... ∧ pn. The premises of a GDR rule are classified into two
types: dataspace premises and external source premises. A dataspace premise
describes conditions over a Grapple dataspace in the form of a pattern-based Grapple
Query. An external source premise specifies conditions in the form of triple patterns
over an external data source accessible through a SPARQL endpoint. The consequent
describes the Grapple statements that will be derived if all the premises are hold. It
specifies the subject, predicate, and object properties of the Grapple statements, and
optionally the level properties. A GDR rule also has extra information such as name,
description, and creator. Variables are indicated using the standard convention of
prefixing them with a question mark (e.g., ?x). The GDR rule is formally defined as
following.

Definition 1. [Dataspace Premise] A dataspace premise d is a 2-tuple (ds, f), where
ds is the Grapple dataspace identifier, and f is partial function that maps a finite set of
Grapple statement properties to variables and constants. A set of dataspace premises
is defined as D.

Definition 2. [External Source Premise] An external source premise e is a 4-tuple
(uri, endpoint, namedGraph, T), where uri is the informal identifier of the dataset,
endpoint is the URI of SPARQL endpoint of the data source where the dataset is
stored, namedGraph is the named graph that is used to store the dataset in the data
source, and T is a basic graph pattern with at least one triple pattern. A set of external
source premises is defined as E.

Definition 3. [Consequent] A consequent c is a dataspace premise (ds, f), where f is
defined for at least gc:subject, gc:predicate, and gc:object, and at most also gc:level.

Definition 4. [A GDR Rule] A GDR rule r is a 3-tuple (M, A, c), with:
• M is a set of additional information of r, such as the name, description, and

creator of the rule,
• A is the antecedent of the rule, which is a conjunction of premises written p1 ∧

... ∧ pn, where pi ∈ (D ∪ E) and n > 0,

• c is the consequent of the rule such that all variables in c appear in at least one
premise of A.

In Section 4.3, we present the XML serialization format of GDR by an example. The
next section introduces the engine that interprets and enforces given GDR rules.

Fig. 4. The Architecture of GDR Engine

4.2 GDR Engine

The GDR Engine is responsible to derive new knowledge based on a “recipe” defined
in a GDR rule that possibly effects the integration of data from different data sources.
Fig. 4 depicts its architecture and interactions with other GUMF modules. The GDR
Engine consists of five components: the Controller, the Query Engine (QE), the Join
Processor (JP), the Result Generator (RG), and the Temporary Repository (TR).

The Controller manages the whole process happening inside the GDR Engine. It
receives requests from the GUMF Reasoning Logic Core. It also utilizes the QE to
fetch data and maintain intermediate data temporarily and the JP component to
perform join operations. It exploits the RG to generate a set of newly derived Grapple
statements. The QE inside the GDR Engine performs the following tasks: 1) by
sending query requests to the GUMF Dataspace Logic, it fetches data from GUMF
dataspaces; 2) it queries external data sources through SPARQL endpoints; 3) it reads
and writes data that is temporarily maintained in the TR. The TR component is an
RDF repository that is used to store the RDF triples of intermediate results (e.g. join
results). The JP component is responsible in performing join operations. This
component interacts with the QE whenever it wants to retrieve data from the TR and
the external data sources as well as to put data into the TR. The RG analyzes the
premises and consequent of the rule, generates a SPARQL query that will be issued
against the GDR’s temporary repository, and constructs a set of Grapple statements to
be returned to the GUMF Reasoning Logic Core as the result.

When a client application issues a pattern-based query q to GUMF, the Dataspace
Logic forwards query q to the Reasoning Logic. The Reasoning Logic Core module
then checks if there are any GDR rules relevant for q. For each relevant rule r, the
Reasoning Logic Core sends a request to the GDR Engine to process rule r.

The GDR Engine first evaluates all the dataspace premises of r and maintains the
result of each dataspace premise evaluation in the TR by utilizing the QE. Based on
the Grapple Query patterns specified in the dataspace premises, the QE sends requests
to the GUMF Dataspace Logic to fetch data from dataspaces. If there is at least one
dataspace premise evaluation that returns no result, then the GDR Engine stops
processing r and returns null meaning that rule r derives no result. The intuition
behind this is as following. The empty result of a dataspace premise d means that
there is no Grapple statement that satisfies the pattern defined in premise d.
Consequently, premise d does not hold, and thus rule r does not hold. In the case that
all dataspace premise evaluations return results, the GDR Engine continues
processing r.

Next, the GDR Engine exploits the JP to join the dataspace premises using the
results stored in the TR. If two dataspace premises d1 and d2 share the same variables,
then they can be joined. The join results are also temporarily stored in the TR. If two
premises can be joined, but the join result is empty, then the GDR Engine stops
processing r and returns null. Note that in the current implementation, the GDR
Engine joins the dataspace premises based on the appearance order in r. Optimizing
the join order is an interesting and non-trivial research problem. However, since the
focus of this paper is to present a configurable method for integrating and enriching
user data, the join optimization issue will be investigated in the future.

The next step is to process the external premises. The GDR Engine also processes
the external source premises according to the appearance order in r. Given an external
premise e, the JP checks if e can be joined with previously processed premises (both
dataspace and external source premises). If e can be joined, then the QE is exploited
to fetch the data of previously processed premises stored in the TR, to construct
SPARQL queries based on the specified triple patterns and fetched data, and to send
these queries to the SPARQL endpoint of e. The results of these queries are
maintained by the TR. Note that the results can be used in processing other external
source premises. If e can be joined with another external source premise ej that is not
processed yet, the JP will process ej first before processing e. This process stops if all
possible joins between premises are performed. If there is an external source premise
ek that cannot be joined with other premises, the JP requests the QE to constructs a
SPARQL query only based on the specified triple patterns. In constructing the query,
the QE takes into account whether or not premise ek and the consequent of r share at
least one variable. If they do not share any variables, then the QE rewrites the query
to an ASK form to test whether or not it has a solution. The intuition is that if a
premise cannot be joined with other premises and the data from this premise will not
be used in the final result, then we only need to check whether this premise returns
any results. The constructed query then is sent to the SPARQL endpoint of ek, and the
result is stored in the TR.

After all premises are processed, then the Controller sends request to the RG that
generates a set of new Grapple statements. The RG analyzes rule r and generates a
SPARQL query that is executed against the temporary data stored in the TR. The
result of this SPARQL query is then modeled as Grapple statement and sent to the
Controller, which subsequently sends it to the Reasoning Logic Core.

Fig. 5. GUMF Administrator Page

Fig. 6. GDR Rule Creation Page: Friendly Mode

4.3 Extending GUMF with GDR

We implemented the GDR Engine in Java. For the Temporary Repository component,
we choose to base our implementation on the open-source RDF framework Sesame10.
Sesame offers a good level abstraction on connecting to and querying of RDF data,
similar to JDBC. The GDR Engine is integrated into GUMF as a module inside the
Reasoning Logic. For this purpose, there are several components in GUMF that have

10 http://www.openrdf.org/

to be extended. The “Plug-in & Rule Repository” of GUMF is extended to be able to
store the GDR rules. We added a feature in the Reasoning Logic Core component to
detect which GDR rules in the dataspace are relevant for a Grapple query sent by
GUMF client. This can be done by analyzing the consequent of the rules. The
Reasoning Logic Core has to be able to communicate with the GDR Engine.
Furthermore, the GUMF administrator page is extended such that it shows the list of
specified GDR and a hyperlink to the GDR rule creation page (Fig. 5). There are two
ways of creating a GDR rule: friendly mode and expert mode. In the friendly mode
(Fig. 6) the dataspace administrator specifies the rule by filling up provided form
fields. In the expert mode, the administrator has to type the rule in XML format.

Fig. 7 The Snapshot of A1 and A2 Dataspaces (partial view)

5 Use Case

In this section, we showcase the extended GUMF in the e-learning domain in the
context of the GRAPPLE project. GDR applied in GUMF allows for distributed user
modeling across e-learning systems. Suppose there are two adaptive e-learning
applications, namely, A1 and A2 that use GUMF. A1 that is a Moodle-based
application is used for a basic Geography course, and A2 that is an AHA!-based
application is used for an Urban Geography course. Fig. 7(a) depicts a set of Grapple
statements in the A1 dataspace. Fig. 7(b) depicts a set of Grapple statements in the A2
dataspace. A set of triples derived by a semantic enhancement plug-ins that relates
data in the dataspace to the GeoNames concepts is shown in Fig. 7(c).

The creator of A2 would like to suggest Wikipedia pages about the subject that the
students are currently taking for enhancing their knowledge about the subject if they
have good basic knowledge about Geography. She knows that application A1 provides
the basic Geography course, and thus chooses to reuse data from A1. She applies for a
dataspace subscription to A1 and the creator of A1 approves this subscription request.
Thus, A2 is able to query data in the A1 dataspace. Moreover, the creator of A2 defines
a GDR rule named “Get Wiki Page” as shown in Fig. 8 that can be used to integrate
data from four distributed data source to get the URLs of Wikipedia pages.

Fig. 8 An Example of a GDR Rule in XML Syntax

There are two dataspace premises and three external source premises defined in the
GDR rule. The first dataspace premise (Lines 06 – 11) is used to determine the
students who have passed the Geography subject using application A1 with at least a
50% score. The second one (Lines 12 – 16) retrieves a set of Grapple statements
whose gc:predicate is http://apps.org/A2/isLearning. These dataspace premises are
joined, and the result of join is as following.

user subject
user:anna subject:Malaysia
user:cindy subject:Delft

Using this result, the external source premises are processed. For example, the
bindings of variable subject that is one of the variables in the first external premise
(Lines 17 – 19) are available. Hence, the values of the bindings of variable subject
and the triple pattern specified in this premise are used to construct SPARQL queries
that will be sent to the SPARQL endpoint of the premise. For the first external source
premise, the following SPARQL query is constructed.

 SELECT ?geonameConcept ?subject
 WHERE {
 { ?subject <http://sakai.org/isRelatedTo> ?geonameConcept .
 FILTER (?subject = <http://subject.org/Delft>) . }
 UNION

 { ?subject <http://sakai.org/isRelatedTo> ?geonameConcept .
 FILTER (?subject = <http://subject.org/Malaysia>) . }
 }

The result of this query is stored in the Temporary Repository for further processes.

Fig. 9 Graph Patterns Across Three Different Data Sources

Fig. 10 Derived Grapple Statements

Basically, the external source premises specify the graph patterns across three
different data sources (namely, dataspace A2, GeoNames, and DBpedia) that must be
matched in order to get the Wikipedia pages. For example, Fig. 9 depicts the path
from resource subject:Malaysia to resource http://en.wikipedia.org/wiki/Malaysia.
The GDR rule in Fig. 8 derives two Grapple statements as depicted in Fig. 10.

6 Conclusion

In this paper, we have extended the Grapple User Modeling Framework (GUMF) with
the Grapple Derivation Rule language (GDR), and thus the reasoning capability of
GUMF is extended and enhanced by allowing Web applications to exchange, reuse,
integrate, and enrich the user data using not only data in Grapple dataspaces, but also
openly accessible data published on the Web as Linked Data in a flexible and
configurable way. We have implemented and integrated our method into the GUMF
and applied it in an e-learning setting where different e-learning systems (such as
Moodle, AHA!, and CLIX) are connected. Our method successfully supports the
integration and enrichment of user data as demonstrated by a representative use case.

As a continuation of our work, we plan to extend GDR specification such that we
can derive not only Grapple statements, but also RDF graphs. We also plan to
improve the join heuristic of GDR Engine as currently the join process only follows
the order of appearance in the rule. We also would like to evaluate the GDR Engine in
terms of performance and, especially, scalability to explore the limit of our approach
as Semantic Web reasoning applications typically run into scalability issues.

Acknowledgments. This work was partially supported by the European 7th
Framework Program project GRAPPLE (“Generic Responsive Adaptive Personalized
Learning Environment”): http://www.grapple-project.org.

References

1. Abel, F., Henze, N., Herder, E., Krause, D.: Interweaving Public Profile Data on the Web,
Technical Report, L3S Research Center, Hannover, Germany, 2010.

2. Broeskstra, J., Kampman, A.: SeRQL: A Second Generation RDF Query Language.
SWAD-Europe Workshop on Semantic Web Storage and Retrieval, Vrije Universiteit,
Amsterdam, Netherlands, 2003.

3. Firan, C.S., Nejdl, W., Paiu, R.: The Benefit of Using Tag-based Profiles. In: Proc. of LA-
WEB 2007, Washington, DC, USA, IEEE Computer Society, 2007.

4. Prud'hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C
Recommendation, January 2008. Available at: http://www.w3.org/TR/rdf-sparql-query/

5. Stewart, C., Celik, I., Cristea, A., Ashman, H.: Interoperability between aeh user models.
In Proc. of APS 2006, 2006.

6. Aroyo, L., Dolog, P., Houben, G., Kravcik, M., Naeve, A., Nilsson, M., Wild, F.:
Interoperability in personalized adaptive learning. J. Educational Technology &Society 9
(2) (2006) 4–18.

7. Berners-Lee, Tim: Design Issues: Linked Data. (2006)
http://www.w3.org/DesignIssues/LinkedData.html.

8. Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL. In Proc. of
ESWC 2008, 2008.

9. Hartig, O., Bizer, C., Freytag, J.-C.: Executing SPARQL Queries over the Web of Linked
Data. In Proc of ISWC 2009, 2009.

10. Langegger, A., Wöß, W., Blöchl, M.: A semantic web middleware for virtual data
integration on the web. In Proc of ESWC 2008, 2008.

11. Abel, F., Heckmann, D., Herder, E., Hidders, J., Houben, G.-J., Krause, D., Leonardi, E.,
van der Sluijs, K.: A Framework for Flexible User Profile Mashups. In the Proc. of the
APWEB 2.0 2009 Workshop in conjunction UMAP 2009, 2009.

12. Langegger, A.: Virtual data integration on the web: novel methods for accessing
heterogeneous and distributed data with rich semantics. In Proc. of iiWAS’08, 2008.

13. Schenk, S., Staab, S.: Networked graphs: a declarative mechanism for sparql rules, sparql
views and rdf data integration on the web. In Proc. of WWW ’08, 2008.

14. Zemanek, J., Schenk, S., Svatek, V.: Optimizing sparql queriesover disparate rdf data
sources through distributed semi-joins. In ISWC 2008 Poster and Demo Session
Proceedings. CEUR-WS, 2008.

15. Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML.
http://www.w3.org/Submission/SWRL/.

16. McGuinness, D. L., van Harmelen, F. (eds.): OWL Web Ontology Language Overview,
W3C Recommendation, Feb, 2004. http://www.w3.org/TR/owl-features/.

17. W3C OWL Working Group (eds.): OWL 2 Web Ontology Language Document
Overview, W3C Recommendation, Oct, 2009. http://www.w3.org/TR/owl2-overview/.

18. Rule Markup Language Initiative. Rule Markup Language (RuleML). http://ruleml.org/
19. Kifer, M.: Rule Interchange Format: The Framework. In the Proc. of RR 2008, 2008.
20. Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-Moellendorff,

M.: GUMO - The General User Model Ontology. In Proc. of UM 2005, 2005.
21. Kuflik, T.: Semantically-Enhanced User Models Mediation: Research Agenda. In Proc. of

UbiqUM'2008 Workshop at IUI 2008, Gran Canaria, Spain, 2008.
22. Finkel, J. R., Grenager, T., Manning, C.: Incorporating Non-local Information into

Information Extraction Systems by Gibbs Sampling. In Proc. of ACL 2005, 2005.

