
Mashing up user data in the Grapple User Modeling Framework
Fabian Abel1, Dominikus Heckmann2, Eelco Herder1, Jan Hidders3, Geert-Jan Houben3,

Daniel Krause1, Erwin Leonardi3, Kees van der Slujis4

1 L3S Research Center, Hannover, Germany, {abel,herder,krause}@L3S.de
2 DFKI GmbH, Saarbrücken, Germany, heckmann@dfki.de

3 WIS, TU Delft, The Netherlands{a.j.h.hidders,g.j.p.m.houben,e.leonardi}@tudelft.nl
4 CS Department, Eindhoven University of Technology, The Netherlands, k.a.m.sluijs@tue.nl

Abstract

In this paper we demonstrate the Grapple
User Modeling Framework (GUMF), which ex-
ploits Semantic Web technologies and Web 2.0
paradigms to model users across different appli-
cations and domains. It introduces novel features
such as dataspaces, which logically bundle user
data, and user pipes, which allow to mash up user
data from different sources.

1 Introduction

Web systems such as Amazon or YouTube brought person-
alization to the general public. While those popular sys-
tems base recommendations on a large amount of data - by
means of collaborative filtering and social network analysis
- [Frias-Martinez et al., 2005], the majority of Web appli-
cations cannot build upon a big user population and users
might not interact regularly with these systems. A promis-
ing approach to compensate for this lack of data is cross-
application user modeling [Korth and Plumbaum, 2007].
In contrast to the centralized approach of generic user mod-
eling servers [Abel et al., 2008], a conversion-based ap-
proach allows for flexible mappings. These mappings can
be created from one system to another, or by making use
of generalized representations, such as the General User
Model Ontology (GUMO) [Heckmann et al., 2005] and
UserRDF [Abel et al., 2008].

In this paper we present the architecture and im-
plementation of the Grapple User Modeling Framework
(GUMF) [Abel et al., 2009a], which re-uses, refines and
enhances previous work in the area of cross-application
and generic user modeling systems. GUMF1 organizes user
profile data in dataspaces, which constitute views on a spe-
cific set of data. Dataspaces are extensible with plug-ins for
mapping and integrating data from external data sources;
these plug-ins can also be used to reason with existing to
deduce further knowledge about the user. In addition to tra-
ditional rule-based approaches, GUMF provides so-called
user pipes [Abel et al., 2009a] that mash up different (user
profile) data streams, formatted in RDF or RSS, making
use of Semantic Web Pipes2 or Yahoo Pipes3.

1Currently available at: http://semweb.kbs.
uni-hannover.de:8082/grapple-umf/

2http://pipes.deri.org
3http://pipes.yahoo.com

2 GUMF: Grapple User Modeling
Framework

Figure 1 shows the architecture of GUMF. The elements
at the top provide the essential, generic functionality of
the framework; elements part at the bottom right provide
generic as well as domain-specific reasoning logic.

te
ll
 (

s
to

re
),

 a
s
k
 (

q
u

e
ry

)

Client

(Application)

Query Engine

Browser

Module

browsing

&

searching

Administrator

GRAPPLE UMF

Plug-ins & Rule

Repository

GUMF

Admin

Interface

Client

API
REST

GUI

G
U

M
F

 C
o
n
tr

o
lle

r

Repository

Authentication

Repository

Repository

Store Module

SOAP

Reasoning Logic

Reasoner
Core

Plug-ins

Dataspace

Logic

Web

Dataspace

Repository

Access Control
Configuring

plug-ins,

dataspaces,

reasoning

rules

Figure 1: Architecture of the Grapple User Modeling
Framework.

Client applications can access GUMF either via a REST-
ful or SOAP-based API. Further, there is a Java Client
API that facilitates development of GUMF client applica-
tions. Client applications mainly approach GUMF to store
user information (handled by the Store Module) or to query
for information (handled by Query Engine). User pro-
file information is modeled by Grapple statements [Abel
et al., 2009b], which are basically reified RDF statements
about a user, enriched with provenance metadata. GUMF
currently supports SPARQL and SeRQL queries as well
as a pattern-based query language that exploits the Grap-
ple statement structure to specify what kind of statements
should be returned by GUMF. Authorized client requests
are answered by GUMF’s Dataspace Logic. Dataspaces
are equipped with data storage repositories that either re-
side at the GUMF server or are distributed across the Web
(possibly maintained by the client application itself), and
with (reasoning) plug-ins that further enrich the data that is
available in the repositories.

The Administrator of a GUMF client application can
configure dataspaces and plug-ins via the GUMF Admin In-
terface. Activating or deactivating plug-ins directly influ-
ences the behavior of dataspaces. Further, administrators
can adjust the plug-ins and reasoning rules to their needs.
For example, we developed a plug-in that gathers user pro-
file information from Facebook and maps—with support of

Silk4—the profile to a format preferred by the client appli-
cation administrator (e.g., FOAF5 or OpenSocial6).

Inspired by Web 2.0 practices, a key principle of GUMF
is that dataspaces can be shared across different client ap-
plications. Therefore, clients can subscribe to other datas-
paces, given that they are granted approval by the adminis-
trator of the dataspace. When subscribed to a dataspace, the
client is allowed to query it. However, it might still not be
allowed to access all statements that are made available via
the dataspace, as fine-grained access control functionality
can be embedded in the dataspaces as well.

3 Demonstration Overview

In our demonstration we primarily show how client ap-
plications can benefit from the Grapple User Modeling
Framework.

Developers of client applications first have to register
their application at GUMF. Upon registration, a dataspace
is generated that can immediately be used to store user
profile information. As an example, a client might store
user interests such as “Peter is interested in Darmstadt” in
GUMF, by using the RESTful API and the Java Client im-
plementation. GUMF models such information as Grapple
statement.

<gc:Statement rdf:about="&ds10;6357701291243375806816">
<gc:subject rdf:resource="&guser;peter"/>
<gc:predicate rdf:resource="&foaf;interest"/>
<gc:object rdf:resource="&dbpedia;Darmstadt"/>
<gc:level rdf:datatype="&xsd;double">0.7</gc:level>
<gc:origin>[peter(Interest: Darmstadt, 0.7]</gc:origin>
<gc:created rdf:datatype="&xsd;dateTime">

2009-05-27T00:10:06.817+02:00</gc:created>
<gc:creator rdf:resource="&gclient;10"/>

</gc:Statement>

The core part of the Grapple statement consists of
a subject-predicate-object triple, possibly extended with
gc:level that describes to which degree the statement
is true. In addition, the client can store the information
in its original format (gc:origin). GUMF enriches
the statement with metadata such as a globally unique
ID, a timestamp (gc:created, which is a subproperty
of dc:created), or the client (or plug-in) that created
the statement (gc:creator, which is a sub-property of
dc:creator).

Figure 2 shows the administration interface of GUMF,
in particular the configuration of the dataspaces. Admin-
istrators can add plug-ins to a dataspace (cf. “add plug-
in”) and adjust which client applications are allowed to
access the dataspace (cf. “Subscriptions”). Via GUMF’s
RESTful API, client applications send advanced SPARQL
queries or queries based on simple patterns. As an exam-
ple, ../ds/13/predicate/interest would return
all Grapple statements in the dataspace ../ds/13 on user
interests. The output format of a query can be selected as
well. At the moment, GUMF supports RDF/XML, RSS 2.0
and SPARQL Query Results XML format.

In our demonstration at ABIS, we will show how GUMF
is applied to mash up and reason with user profile informa-
tion from different tagging and social networking systems
(Flickr, Facebook, TagMe!7, and GroupMe!8).

4http://www4.wiwiss.fu-berlin.de/bizer/silk/
5http://xmlns.com/foaf/spec/
6http://web-semantics.org/ns/opensocial/
7http://tagme.groupme.org
8http://groupme.org

Figure 2: Configuration of Dataspaces and Plug-Ins in the
GUMF Web Application.

References
[Abel et al., 2009a] F. Abel, D. Heckmann, E. Herder, J.

Hidders, G.-J. Houben, D. Krause, E. Leonardi, and K.
van der Slujis. A Framework for Flexible User Profile
Mashups. In Proc. of Int. Workshop on Adaptation and
Personalization for Web 2.0 at UMAP ’09, Trento, Italy,
2009.

[Abel et al., 2009b] F. Abel, D. Heckmann, E. Herder, J.
Hidders, G.-J. Houben, D. Krause, E. Leonardi, and K.
van der Slujis. Definition of an appropriate User profile
format. Technical Report D2.1, Grapple project, March
2009.

[Abel et al., 2008] F. Abel, N. Henze, D. Krause, and D.
Plappert. User modeling and user profile exchange for
Semantic Web applications. In Proc. of Workshop on
Adaptivity and User Modeling in Interactive Systems,
Wuerzburg, Germany, 2008.

[Frias-Martinez et al., 2005] E. Frias-Martinez, G.
Magoulas, S. Chen, and R. Macredie. Modeling human
behavior in user-adaptive systems: Recent advances
using soft computing techniques. Expert Systems with
Applications 29:320–229, 2005.

[Heckmann et al., 2005] D. Heckmann, T. Schwartz, B.
Brandherm, M. Schmitz, and M. von Wilamowitz-
Moellendorff. GUMO - The General User Model Ontol-
ogy. In Proc. of Int. Conf. on User Modeling, Edinburgh,
UK, 428–432, 2005.

[Kobsa et al., 2001] A. Kobsa, J. Koenemann, and W.
Pohl. Personalized hypermedia presentation techniques
for improving customer relationships. The Knowledge
Engineering Review 16 (2):111–155, 2001.

[Korth and Plumbaum, 2007] A. Korth and T. Plumbaum.
A framework for ubiquitous user modeling. In Proc. of
Int. Conf. on Information Reuse and Integration, 2007.

